Difference between revisions of "009B Sample Final 1, Problem 5"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> The region bounded by the parabola <math style="vertical-align: -4px">y=x^2</math> and the line <math style="vertical-align: -4px">y=2x</math> in the first quadrant is revolved about the <math style="vertical-align: -4px">y</math>-axis to generate a solid. |
− | + | <span class="exam">(a) Sketch the region bounded by the given functions and find their points of intersection. | |
− | + | <span class="exam">(b) Set up the integral for the volume of the solid. | |
− | + | <span class="exam">(c) Find the volume of the solid by computing the integral. | |
− | |||
− | |||
− | |||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math> |
|- | |- | ||
| | | | ||
− | + | by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x.</math> | |
|- | |- | ||
− | | | + | |'''2.''' The volume of a solid obtained by rotating an area around the <math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by |
− | |||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -13px">\int 2\pi rh~dx,</math> where <math style="vertical-align: 0px">r</math> is the radius of the shells and <math style="vertical-align: 0px">h</math> is the height of the shells. | |
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 36: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we sketch the region bounded by the | + | |First, we sketch the region bounded by the given functions. |
− | |||
− | |||
|- | |- | ||
− | |[[File: | + | |[[File:009B_SF1_5.png|center|300px]] |
|} | |} | ||
Line 46: | Line 37: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Setting the equations equal, we have <math style="vertical-align: 0px"> | + | |Setting the equations equal, we have <math style="vertical-align: 0px">x^2=2x.</math> |
+ | |- | ||
+ | |Solving for <math style="vertical-align: -4px">x,</math> we get | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{0} & = & \displaystyle{x^2-2x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x(x-2).} | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |So, <math style="vertical-align: 0px">x=0</math> and <math style="vertical-align: 0px">x=2.</math> |
|- | |- | ||
− | |This intersection | + | |If we plug these values into our functions, we get the intersection points |
+ | |- | ||
+ | | <math style="vertical-align: -4px">(0,0)</math> and <math style="vertical-align: -4px">(2,4).</math> | ||
+ | |- | ||
+ | |This intersection points can be seen in the graph shown in Step 1. | ||
|} | |} | ||
Line 58: | Line 61: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x.</math> | + | |We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x.</math> |
|- | |- | ||
− | |The height of the shells is given by | + | |The height of the shells is given by <math style="vertical-align: 0px">h=2x-x^2.</math> |
− | |||
− | |||
− | |||
|} | |} | ||
Line 72: | Line 72: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -14px">\int 2\pi rh~dx~=~\int_0^2 2\pi x(2x-x^2)~dx.</math> | |
|} | |} | ||
Line 83: | Line 83: | ||
|- | |- | ||
| | | | ||
− | + | <math>\int_0^2 2\pi x(2x-x^2)~dx~=~2\pi\int_0^2 2x^2-x^3~dx.</math> | |
|} | |} | ||
Line 89: | Line 89: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
− | \displaystyle{\int_0^ | + | \displaystyle{\int_0^2 2\pi x(2x-x^2)~dx} & = & \displaystyle{2\pi\int_0^2 2x^2-x^3~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{2\pi\bigg( | + | & = & \displaystyle{2\pi\bigg(\frac{2x^3}{3}-\frac{x^4}{4}\bigg)\bigg|_0^2}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{2\pi( | + | & = & \displaystyle{2\pi\bigg(\frac{2^4}{3}-\frac{2^4}{4}\bigg)-2\pi(0)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{\frac{8\pi}{3}.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math style="vertical-align: -5px">( | + | | '''(a)''' <math style="vertical-align: -5px">(0,0),(2,4)</math> (See Step 1 for the graph) |
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: -15px">\int_0^ | + | | '''(b)''' <math style="vertical-align: -15px">\int_0^2 2\pi x(2x-x^2)~dx</math> |
|- | |- | ||
− | | '''(c)''' <math style="vertical-align: -14px"> | + | | '''(c)''' <math style="vertical-align: -14px">\frac{8\pi}{3}</math> |
|} | |} | ||
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 11:16, 23 May 2017
The region bounded by the parabola and the line in the first quadrant is revolved about the -axis to generate a solid.
(a) Sketch the region bounded by the given functions and find their points of intersection.
(b) Set up the integral for the volume of the solid.
(c) Find the volume of the solid by computing the integral.
Foundations: |
---|
1. You can find the intersection points of two functions, say |
by setting and solving for |
2. The volume of a solid obtained by rotating an area around the -axis using cylindrical shells is given by |
where is the radius of the shells and is the height of the shells. |
Solution:
(a)
Step 1: |
---|
First, we sketch the region bounded by the given functions. |
Step 2: |
---|
Setting the equations equal, we have |
Solving for we get |
So, and |
If we plug these values into our functions, we get the intersection points |
and |
This intersection points can be seen in the graph shown in Step 1. |
(b)
Step 1: |
---|
We proceed using cylindrical shells. The radius of the shells is given by |
The height of the shells is given by |
Step 2: |
---|
So, the volume of the solid is |
|
(c)
Step 1: |
---|
We need to integrate |
|
Step 2: |
---|
We have |
|
Final Answer: |
---|
(a) (See Step 1 for the graph) |
(b) |
(c) |