Difference between revisions of "009B Sample Final 1"
(→ Problem 3 ) |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the final. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | + | '''This is a sample, and is meant to represent the material usually covered in Math 9B for the final. An actual test may or may not be similar.''' |
+ | |||
+ | '''Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
<div class="noautonum">__TOC__</div> | <div class="noautonum">__TOC__</div> | ||
== [[009B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | == [[009B_Sample Final 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Suppose the speed of a bee is given in the table. |
− | |||
− | + | <table border="1" cellspacing="0" cellpadding="6" align = "center"> | |
+ | <tr> | ||
+ | <td align = "center">Time (s)</td> | ||
+ | <td align = "center">Speed (cm/s)</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>0.0</math></td> | ||
+ | <td align = "center"><math> 125.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>2.0</math></td> | ||
+ | <td align = "center"><math> 118.0</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>4.0</math></td> | ||
+ | <td align = "center"><math> 116.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>6.0</math></td> | ||
+ | <td align = "center"><math> 112.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>8.0</math></td> | ||
+ | <td align = "center"><math> 120.0 </math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align = "center"><math>10.0</math></td> | ||
+ | <td align = "center"><math> 113.0 </math></td> | ||
+ | </tr> | ||
− | + | </table> | |
− | + | <span class="exam">(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment. | |
+ | |||
+ | <span class="exam">(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment. | ||
== [[009B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009B_Sample Final 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
<span class="exam"> We would like to evaluate | <span class="exam"> We would like to evaluate | ||
− | + | ::<math>\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg).</math> | |
− | + | <span class="exam">(a) Compute <math style="vertical-align: -15px">f(x)=\int_{-1}^{x} \sin(t^2)2t\,dt</math>. | |
− | + | <span class="exam">(b) Find <math style="vertical-align: -5px">f'(x)</math>. | |
− | + | <span class="exam">(c) State the Fundamental Theorem of Calculus. | |
− | + | <span class="exam">(d) Use the Fundamental Theorem of Calculus to compute <math style="vertical-align: -15px">\frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg)</math> without first computing the integral. | |
== [[009B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | == [[009B_Sample Final 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
<span class="exam">Consider the area bounded by the following two functions: | <span class="exam">Consider the area bounded by the following two functions: | ||
− | + | ::<span class="exam"><math style="vertical-align: -4px">y=\cos x</math> and <math style="vertical-align: -4px">y=2-\cos x,~0\le x\le 2\pi.</math> | |
− | + | <span class="exam">(a) Sketch the graphs and find their points of intersection. | |
− | + | <span class="exam">(b) Find the area bounded by the two functions. | |
== [[009B_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009B_Sample Final 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
<span class="exam"> Compute the following integrals. | <span class="exam"> Compute the following integrals. | ||
− | <span class="exam">a) <math>\int | + | <span class="exam">(a) <math>\int \frac{t^2}{\sqrt{1-t^6}}~dt</math> |
− | <span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> | + | <span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math> |
− | <span class="exam">c) <math>\int \sin^3x~dx</math> | + | <span class="exam">(c) <math>\int \sin^3x~dx</math> |
== [[009B_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009B_Sample Final 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> The region bounded by the parabola <math style="vertical-align: -4px">y=x^2</math> and the line <math style="vertical-align: -4px">y=2x</math> in the first quadrant is revolved about the <math style="vertical-align: -4px">y</math>-axis to generate a solid. |
− | + | <span class="exam">(a) Sketch the region bounded by the given functions and find their points of intersection. | |
− | <span class="exam"> | + | <span class="exam">(b) Set up the integral for the volume of the solid. |
− | + | <span class="exam">(c) Find the volume of the solid by computing the integral. | |
− | |||
− | |||
− | |||
− | |||
== [[009B_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009B_Sample Final 1,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
<span class="exam"> Evaluate the improper integrals: | <span class="exam"> Evaluate the improper integrals: | ||
− | <span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math> | + | <span class="exam">(a) <math>\int_0^{\infty} xe^{-x}~dx</math> |
− | <span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math> | + | <span class="exam">(b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math> |
== [[009B_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009B_Sample Final 1,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
− | <span class="exam">a) Find the length of the curve | + | <span class="exam">(a) Find the length of the curve |
+ | |||
+ | ::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>. | ||
− | + | <span class="exam">(b) The curve | |
− | < | + | ::<math>y=1-x^2,~~~0\leq x \leq 1</math> |
− | + | <span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface. | |
− | |||
'''Contributions to this page were made by [[Contributors|Kayla Murray]]''' | '''Contributions to this page were made by [[Contributors|Kayla Murray]]''' |
Latest revision as of 08:40, 10 April 2017
This is a sample, and is meant to represent the material usually covered in Math 9B for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Suppose the speed of a bee is given in the table.
Time (s) | Speed (cm/s) |
(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment.
(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment.
Problem 2
We would like to evaluate
(a) Compute .
(b) Find .
(c) State the Fundamental Theorem of Calculus.
(d) Use the Fundamental Theorem of Calculus to compute without first computing the integral.
Problem 3
Consider the area bounded by the following two functions:
- and
(a) Sketch the graphs and find their points of intersection.
(b) Find the area bounded by the two functions.
Problem 4
Compute the following integrals.
(a)
(b)
(c)
Problem 5
The region bounded by the parabola and the line in the first quadrant is revolved about the -axis to generate a solid.
(a) Sketch the region bounded by the given functions and find their points of intersection.
(b) Set up the integral for the volume of the solid.
(c) Find the volume of the solid by computing the integral.
Problem 6
Evaluate the improper integrals:
(a)
(b)
Problem 7
(a) Find the length of the curve
- .
(b) The curve
is rotated about the -axis. Find the area of the resulting surface.
Contributions to this page were made by Kayla Murray