Difference between revisions of "009A Sample Final 1, Problem 9"

From Math Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,  
+
<span class="exam">Given the function &nbsp;<math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,  
  
::<span class="exam">a) Find the intervals in which the function increases or decreases.
+
<span class="exam">(a) Find the intervals in which the function increases or decreases.
  
::<span class="exam">b) Find the local maximum and local minimum values.
+
<span class="exam">(b) Find the local maximum and local minimum values.
  
::<span class="exam">c) Find the intervals in which the function concaves upward or concaves downward.
+
<span class="exam">(c) Find the intervals in which the function concaves upward or concaves downward.
  
::<span class="exam">d) Find the inflection point(s).
+
<span class="exam">(d) Find the inflection point(s).
  
::<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>.
+
<span class="exam">(e) Use the above information (a) to (d) to sketch the graph of &nbsp;<math style="vertical-align: -5px">y=f(x)</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 16: Line 16:
 
|Recall:
 
|Recall:
 
|-
 
|-
|
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing when &nbsp;<math style="vertical-align: -5px">f'(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is decreasing when &nbsp;<math style="vertical-align: -5px">f'(x)<0.</math>
::'''1.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing when <math style="vertical-align: -5px">f'(x)>0</math>&thinsp; and <math style="vertical-align: -5px">f(x)</math>&thinsp; is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math>
 
 
|-
 
|-
|
+
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
::'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
 
|-
 
|-
|
+
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up when &nbsp;<math style="vertical-align: -5px">f''(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave down when &nbsp;<math style="vertical-align: -5px">f''(x)<0.</math>
::'''3.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up when <math style="vertical-align: -5px">f''(x)>0</math>&thinsp; and <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave down when <math style="vertical-align: -5px">f''(x)<0.</math>
 
 
|-
 
|-
|
+
|'''4.''' Inflection points occur when &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
::'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math>
 
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 36: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>&thinsp; We have
+
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp;  
 
|-
 
|-
|
+
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2-12x.</math>
::<math style="vertical-align: -5px">f'(x)=3x^2-12x.</math>
 
 
|-
 
|-
|Now, we set <math style="vertical-align: -5px">f'(x)=0.</math>&thinsp; So, we have  
+
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">0=3x(x-4).</math>
::<math style="vertical-align: -6px">0=3x(x-4).</math>
 
 
|-
 
|-
|Hence, we have <math style="vertical-align: 0px">x=0</math>&thinsp; and <math style="vertical-align: -1px">x=4.</math>
+
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=4.</math>
 
|-
 
|-
|So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: &thinsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>  
+
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals:  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>  
 
|}
 
|}
  
Line 56: Line 53:
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.  
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.  
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math>
::For <math style="vertical-align: -5px">x=-1,~f'(x)=15>0.</math>
 
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math>
::For <math style="vertical-align: -5px">x=1,~f'(x)=-9<0.</math>
 
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math>
::For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math>
 
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>&thinsp; and decreasing on <math style="vertical-align: -5px">(0,4).</math>
+
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(0,4).</math>
 
|}
 
|}
  
Line 73: Line 67:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|By the First Derivative Test, the local maximum occurs at <math style="vertical-align: -1px">x=0</math> and the local minimum occurs at <math style="vertical-align: -1px">x=4.</math>
+
|By the First Derivative Test, the local maximum occurs at &nbsp;<math style="vertical-align: -1px">x=0</math>&nbsp; and the local minimum occurs at &nbsp;<math style="vertical-align: -1px">x=4.</math>
 
|}
 
|}
  
Line 79: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, the local maximum value is <math style="vertical-align: -5px">f(0)=5</math> and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
+
|So, the local maximum value is &nbsp;<math style="vertical-align: -5px">f(0)=5</math>&nbsp; and the local minimum value is &nbsp;<math style="vertical-align: -5px">f(4)=-27.</math>
 
|}
 
|}
  
Line 87: Line 81:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math>
+
|To find the intervals when the function is concave up or concave down, we need to find &nbsp;<math style="vertical-align: -5px">f''(x).</math>
 
|-
 
|-
|We have  
+
|We have &nbsp;<math style="vertical-align: -5px">f''(x)=6x-12.</math>
 
|-
 
|-
|
+
|We set &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
::<math style="vertical-align: -5px">f''(x)=6x-12.</math>
 
 
|-
 
|-
|We set <math style="vertical-align: -5px">f''(x)=0.</math>
+
|So, we have
 
|-
 
|-
|So, we have
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">0=6x-12.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: 0px">x=2.</math>
 
|-
 
|-
|
+
|This value breaks up the number line into two intervals:  
::<math style="vertical-align: -1px">0=6x-12.</math>
 
 
|-
 
|-
|Hence, <math style="vertical-align: 0px">x=2.</math> This value breaks up the number line into two intervals: <math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,2),(2,\infty).</math>
 
|}
 
|}
  
Line 109: Line 101:
 
|Again, we use test points in these two intervals.
 
|Again, we use test points in these two intervals.
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=0,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=-12<0.</math>
::For <math style="vertical-align: -5px">x=0,</math>&thinsp; we have <math style="vertical-align: -5px">f''(x)=-12<0.</math>
 
 
|-
 
|-
|
+
|For &nbsp;<math style="vertical-align: -5px">x=3,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=6>0.</math>
::For <math style="vertical-align: -5px">x=3,</math>&thinsp; we have <math style="vertical-align: -5px">f''(x)=6>0.</math>
 
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
+
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(2,\infty),</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,2).</math>
 
|}
 
|}
  
Line 121: Line 111:
 
!(d) &nbsp;  
 
!(d) &nbsp;  
 
|-
 
|-
| Using the information from part '''(c)''', there is one inflection point that occurs at <math style="vertical-align: 0px">x=2.</math>
+
| Using the information from part (c), there is one inflection point that occurs at &nbsp;<math style="vertical-align: 0px">x=2.</math>
 
|-
 
|-
|Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11.</math>
+
|Now, we have &nbsp;<math style="vertical-align: -5px">f(2)=8-24+5=-11.</math>
 
|-
 
|-
|So, the inflection point is &thinsp;<math style="vertical-align: -5px">(2,-11).</math>
+
|So, the inflection point is &nbsp;<math style="vertical-align: -5px">(2,-11).</math>
 
|}
 
|}
  
Line 133: Line 123:
 
|[[File: 9AF1_9_GP.png|700px|center]]
 
|[[File: 9AF1_9_GP.png|700px|center]]
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math>
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(0,4).</math>
 
|-
 
|-
|'''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>&thinsp; and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;The local maximum value is &nbsp;<math style="vertical-align: -5px">f(0)=5,</math>&nbsp; and the local minimum value is &nbsp;<math style="vertical-align: -5px">f(4)=-27.</math>
 
|-
 
|-
|'''(c)''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(2,\infty),</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,2).</math>
 
|-
 
|-
|'''(d)''' <math style="vertical-align: -5px">(2,-11)</math>
+
|&nbsp; &nbsp;'''(d)''' &nbsp; &nbsp; <math style="vertical-align: -5px">(2,-11)</math>
 
|-
 
|-
|'''(e)''' See graph in '''(e)'''.
+
|&nbsp; &nbsp;'''(e)''' &nbsp; &nbsp; See graph above.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 08:17, 10 April 2017

Given the function  ,

(a) Find the intervals in which the function increases or decreases.

(b) Find the local maximum and local minimum values.

(c) Find the intervals in which the function concaves upward or concaves downward.

(d) Find the inflection point(s).

(e) Use the above information (a) to (d) to sketch the graph of  .

Foundations:  
Recall:
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when  


Solution:

(a)

Step 1:  
We start by taking the derivative of   
We have  
Now, we set    So, we have
       
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:
       
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  
For  
For  
Thus,    is increasing on    and decreasing on  

(b)

Step 1:  
By the First Derivative Test, the local maximum occurs at    and the local minimum occurs at  
Step 2:  
So, the local maximum value is    and the local minimum value is  

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  
We have  
We set  
So, we have
         Hence,  
This value breaks up the number line into two intervals:
       
Step 2:  
Again, we use test points in these two intervals.
For    we have  
For    we have  
Thus,    is concave up on the interval    and concave down on the interval  
(d)  
Using the information from part (c), there is one inflection point that occurs at  
Now, we have  
So, the inflection point is  
(e)  
9AF1 9 GP.png


Final Answer:  
   (a)      is increasing on    and decreasing on  
   (b)    The local maximum value is    and the local minimum value is  
   (c)      is concave up on the interval    and concave down on the interval  
   (d)    
   (e)     See graph above.

Return to Sample Exam