Difference between revisions of "Lines"
(One intermediate revision by the same user not shown) | |||
Line 28: | Line 28: | ||
Given a slope m, and y-intercept (0, b) the slope intercept form for the line is y = mx + b. | Given a slope m, and y-intercept (0, b) the slope intercept form for the line is y = mx + b. | ||
− | + | '''Example:''' Given a line with slope 5 and y-intercept (0, -2) the equation of the line, in slope intercept form, is y = 5x - 2. | |
==Point Slope Form== | ==Point Slope Form== | ||
Line 34: | Line 34: | ||
Given a point <math>(x_1, y_1)</math> and a slope m, the point slope form for a line is <math> y - y_1 = m(x - x_1)</math>. | Given a point <math>(x_1, y_1)</math> and a slope m, the point slope form for a line is <math> y - y_1 = m(x - x_1)</math>. | ||
− | Example: Find the equation of a line with slope -2 going through the point (3, 7). | + | '''Example:''' Find the equation of a line with slope -2 going through the point (3, 7). |
− | Solution: The equation for the line is <math> y - 7 = (-2)(x - 3)</math> | + | '''Solution:''' The equation for the line is <math> y - 7 = (-2)(x - 3)</math> |
[[Math_5|'''Return to Topics Page]] | [[Math_5|'''Return to Topics Page]] |
Latest revision as of 13:07, 27 March 2016
Lines, parallel, perpendicular, slope intercept, point-slope.
Introduction
As was mentioned in the last section, lines are one of the geometric object that requires the least amount of information to distinguish them. The only information we need is two points. From this information we can find the slope of the line. From here we can determine if lines are two lines are parallel or perpendicular. Then there are two common ways to write the equation of a line. These are called the slope intercept form and the point slope form.
Slope, Parallel, Perpendicular
As was mentioned before the first thing we will discuss is the slope of a line. Given two points, the formula for the slope is . From a geometric standpoint the slope tells you how quickly the line increases in y-value per each unit change in x-value.
Example: Find the slope of the line containing (5, 3) and (6, 9).
The slope, denoted m, is .
Two lines are parallel if
For example, y = 5x + 3 is parallel to y = 5x - 4, but is not parallel to y = -3x + 8.
Two lines, are perpedicular if .
For example, is perpendicular to , but is not parallel to
Slope intercept Form
The slope intercept form for a line provides us with both the slope, and y intercept without requiring any work. It also allows us to write the equation of a line with only two pieces of information, the slope and y-intercept. Given a slope m, and y-intercept (0, b) the slope intercept form for the line is y = mx + b.
Example: Given a line with slope 5 and y-intercept (0, -2) the equation of the line, in slope intercept form, is y = 5x - 2.
Point Slope Form
The point slope form is a more widely applicable way to write the equation of a line. Just like the slope intercept form we only require knowledge of the slope, but we only need a point that is on the line, even if it is not the y-intercept. Given a point and a slope m, the point slope form for a line is .
Example: Find the equation of a line with slope -2 going through the point (3, 7).
Solution: The equation for the line is