Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Evaluate the indefinite and definite integrals. ::<span class="exam">a) <math>\int x^2 e^x~dx</math> ::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~d...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Evaluate the indefinite and definite integrals.
+
<span class="exam"> A population grows at a rate
  
::<span class="exam">a) <math>\int x^2 e^x~dx</math>
+
::<math>P'(t)=500e^{-t}</math>
::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~dx</math>
 
  
 +
<span class="exam">where &nbsp;<math style="vertical-align: -5px">P(t)</math>&nbsp; is the population after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(a) &nbsp; Find a formula for the population size after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months, given that the population is &nbsp;<math style="vertical-align: 0px">2000</math>&nbsp; at &nbsp;<math style="vertical-align: 0px">t=0.</math>
!Foundations: &nbsp;  
 
|-
 
|Review integration by parts.
 
|}
 
  
'''Solution:'''
+
<span class="exam">(b) &nbsp; Use your answer to part (a) to find the size of the population after one month.
 +
<hr>
 +
[[009B Sample Midterm 1, Problem 3 Solution|'''<u>Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using integration by parts. Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|-
 
|Therefore, we have
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -12px">\int x^2 e^x~dx=x^2e^x-\int 2xe^x~dx</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|-
 
|Building on the previous step, we have
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C</math>.
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using integration by parts. Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx</math>. Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}</math>.
 
|-
 
|Therefore, we have
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -20px">\int_{1}^{e} x^3\ln x~dx=\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx=\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}</math>.
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we evaluate to get
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -17px">\int_{1}^{e} x^3\ln x~dx=\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}</math>.
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' &nbsp; <math>x^2e^x-2xe^x+2e^x+C</math>
 
|-
 
|'''(b)''' &nbsp; <math>\frac{3e^4+1}{16}</math>
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:04, 20 November 2017

A population grows at a rate

where    is the population after    months.

(a)   Find a formula for the population size after    months, given that the population is    at  

(b)   Use your answer to part (a) to find the size of the population after one month.


Solution


Detailed Solution


Return to Sample Exam