Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the average value of the function on the given interval. ::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math> {| class="mw-collapsible mw-collapsed" style = "...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the average value of the function on the given interval.
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
 +
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the formula given in Foundations, we have:
 
|-
 
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=\frac{1}{2-0}\int_0^2 2x^3(1+x^2)^4~dx=\int_0^2 x^3(1+x^2)^4~dx.</math>  
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use <math>u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^2</math>. Then, <math style="vertical-align: 0px">du=2x dx</math> and <math style="vertical-align: -13px">\frac{du}{2}=xdx</math>. Also, <math style="vertical-align: 0px">x^2=u-1</math>.
 
|-
 
|We need to change the bounds on the integral. We have <math style="vertical-align: -4px">u_1=1+0^2=1</math> and <math style="vertical-align: -3px">u_2=1+2^2=5</math>.
 
|-
 
|So, the integral becomes <math style="vertical-align: -19px">f_{\text{avg}}=\int_0^2 x\cdot x^2 (1+x^2)^4~dx=\frac{1}{2}\int_1^5(u-1)u^4~du=\frac{1}{2}\int_1^5(u^5-u^4)~du</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|We integrate to get
 
|-
 
| &nbsp; &nbsp; <math>f_{\text{avg}}=\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5=\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.</math>
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|We evaluate to get
 
|-
 
| &nbsp; &nbsp; <math style="vertical-align: -20px">f_{\text{avg}}=5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)=3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}=\frac{59376}{60}=\frac{4948}{5}</math>.
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
| &nbsp; &nbsp; <math>\frac{4948}{5}</math>
 
|-
 
|
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:02, 12 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam