Difference between revisions of "009B Sample Midterm 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span clas...")
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
+
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
 
== [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">Evaluate the indefinite and definite integrals.
+
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
 +
 
 +
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
 +
 
 +
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
  
::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}~dx</math>
+
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 
  
 
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> Find the average value of the function on the given interval.
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
::<math>f(x)=2x^3(1+x^2)^4,~~~[0,2]</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
 +
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
  
 
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam"> A population grows at a rate
 +
 +
::<math>P'(t)=500e^{-t}</math>
 +
 +
<span class="exam">where &nbsp;<math style="vertical-align: -5px">P(t)</math>&nbsp; is the population after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months.
 +
 +
<span class="exam">(a) &nbsp; Find a formula for the population size after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months, given that the population is &nbsp;<math style="vertical-align: 0px">2000</math>&nbsp; at &nbsp;<math style="vertical-align: 0px">t=0.</math>
 +
 +
<span class="exam">(b) &nbsp; Use your answer to part (a) to find the size of the population after one month.
 +
 +
== [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the indefinite and definite integrals.  
 
<span class="exam"> Evaluate the indefinite and definite integrals.  
  
::<span class="exam">a) <math>\int x^2 e^x~dx</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2 e^x~dx</math>
::<span class="exam">b) <math>\int_{1}^{e} x^3\ln x~dx</math>
+
 
 +
<span class="exam">(b) &nbsp; <math>\int_{1}^{e} x^3\ln x~dx</math>
  
== [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the integral:
 
<span class="exam"> Evaluate the integral:
  
 
::<math>\int \sin^3x \cos^2x~dx</math>
 
::<math>\int \sin^3x \cos^2x~dx</math>
  
== [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
<span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>.
 
  
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
 
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
 
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 10:04, 20 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

 Problem 2 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 3 

A population grows at a rate

where    is the population after    months.

(a)   Find a formula for the population size after    months, given that the population is    at  

(b)   Use your answer to part (a) to find the size of the population after one month.

 Problem 4 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 5 

Evaluate the integral:



Contributions to this page were made by Kayla Murray