Difference between revisions of "009A Sample Final A"
m (→Limits) |
|||
(25 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | '''This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the <span style="color: | + | '''This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the <span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' |
== Limits == | == Limits == | ||
− | <span | + | <span class="exam"> |
− | [[009A_Sample_Final_A,_Problem_1|<span class=" | + | [[009A_Sample_Final_A,_Problem_1| <span class="biglink"> Problem 1. </span>]] Find the following limits:<br> (a) <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> |
<br><br> | <br><br> | ||
(b) <math style="vertical-align: -52%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> | (b) <math style="vertical-align: -52%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> | ||
Line 14: | Line 14: | ||
<br><br> | <br><br> | ||
(e) <math style="vertical-align: -50%;">\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math> | (e) <math style="vertical-align: -50%;">\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math> | ||
− | + | </span> | |
== Derivatives == | == Derivatives == | ||
− | <span | + | <span class="exam">[[009A_Sample_Final_A,_Problem_2|<span class="biglink"> Problem 2. </span>]] Find the derivatives of the following functions: |
<br> | <br> | ||
(a) <math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> | (a) <math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> | ||
Line 23: | Line 23: | ||
(b) <math style="vertical-align: -15%;">g(x)=\pi+2\cos(\sqrt{x-2}).</math> | (b) <math style="vertical-align: -15%;">g(x)=\pi+2\cos(\sqrt{x-2}).</math> | ||
<br><br> | <br><br> | ||
− | (c) | + | (c) <math style="vertical-align: -25%;">h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> |
<br> | <br> | ||
== Continuity and Differentiability == | == Continuity and Differentiability == | ||
− | <span | + | <span class="exam">[[009A_Sample_Final_A,_Problem_3|<span class="biglink"> Problem 3. </span>]] (Version I) Consider the following function: |
<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | <math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | ||
<br> | <br> | ||
Line 35: | Line 35: | ||
(b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. | (b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. | ||
<br><br> | <br><br> | ||
− | [[009A_Sample_Final_A,_Problem_3| | + | [[009A_Sample_Final_A,_Problem_3|<span class="biglink"> Problem 3. </span>]] (Version II) Consider the following function: |
<math style="vertical-align: -80%;">g(x)=\begin{cases} | <math style="vertical-align: -80%;">g(x)=\begin{cases} | ||
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | \sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | ||
Line 43: | Line 43: | ||
(a) Find a value of <math style="vertical-align: 0%">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -2.95%;">x=1.</math> | (a) Find a value of <math style="vertical-align: 0%">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -2.95%;">x=1.</math> | ||
<br> | <br> | ||
− | (b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. | + | (b) With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer. |
== Implicit Differentiation == | == Implicit Differentiation == | ||
− | <span | + | <span class="exam"> |
− | [[009A_Sample_Final_A,_Problem_4 | | + | [[009A_Sample_Final_A,_Problem_4 |<span class="biglink"> Problem 4. </span>]] Find an equation for the tangent |
− | line to the function <math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math> at the point <math style="vertical-align: -15%">(1,1)</math>. | + | line to the function <math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math> at the point <math style="vertical-align: -15%">(1,1)</math>. |
== Derivatives and Graphing == | == Derivatives and Graphing == | ||
− | <span | + | <span class="exam">[[009A_Sample_Final_A,_Problem_5 |<span class="biglink"> Problem 5. </span>]] Consider the function |
| | ||
<math style="vertical-align: -42%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math> | <math style="vertical-align: -42%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math> | ||
Line 65: | Line 65: | ||
(d) Find all inflection points. | (d) Find all inflection points. | ||
<br> | <br> | ||
− | (e) Use the information in the above to sketch the graph of <math style="vertical-align: -14%;">f(x)</math>. | + | (e) Use the information in the above to sketch the graph of <math style="vertical-align: -14%;">f(x)</math>. </span> |
<br> | <br> | ||
== Asymptotes == | == Asymptotes == | ||
− | <br><span | + | <br><span class="exam">[[009A_Sample_Final_A,_Problem_6 |<span class="biglink"> Problem 6. </span>]] Find the vertical and horizontal asymptotes of the function |
<math style="vertical-align: -60%;">f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math> | <math style="vertical-align: -60%;">f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math> | ||
<br> | <br> | ||
Line 75: | Line 75: | ||
== Optimization == | == Optimization == | ||
<br> | <br> | ||
− | <span | + | <span class="exam"> [[009A_Sample_Final_A,_Problem_7 |<span class="biglink"> Problem 7. </span>]] A farmer wishes to make 4 identical rectangular pens, each with |
500 sq. ft. of area. What dimensions for each pen will use the least | 500 sq. ft. of area. What dimensions for each pen will use the least | ||
− | amount of total fencing? | + | amount of total fencing? |
[[File:009A SF A 7 Pens.png|center|500px]] | [[File:009A SF A 7 Pens.png|center|500px]] | ||
Line 83: | Line 83: | ||
== Linear Approximation == | == Linear Approximation == | ||
<br> | <br> | ||
− | <span | + | <span class="exam">[[009A_Sample_Final_A,_Problem_8|<span class="biglink"> Problem 8. </span>]] (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. |
<br> | <br> | ||
− | (b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec\,(3\pi/7)</math>. | + | (b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec\,(3\pi/7)</math>. |
<br> | <br> | ||
== Related Rates == | == Related Rates == | ||
<br> | <br> | ||
− | <span | + | <span class="exam"> [[009A_Sample_Final_A,_Problem_9|<span class="biglink"> Problem 9. </span>]] A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of <math style="vertical-align: -42%;">\frac{dx}{dt}=30</math>. |
How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing | How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing | ||
− | when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''. | + | when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''. |
<br> | <br> | ||
== Two Important Theorems == | == Two Important Theorems == | ||
− | <span | + | <span class="exam">[[009A_Sample_Final_A,_Problem_10|<span class="biglink"> Problem 10. </span>]] Consider the function |
− | | ||
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math> | <math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math> | ||
<br> | <br> | ||
Line 103: | Line 102: | ||
least one zero. | least one zero. | ||
<br> | <br> | ||
− | (b) Use Rolle's Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has exactly one zero. | + | (b) Use Rolle's Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has exactly one zero. |
+ | |||
+ | |||
+ | '''Contributions to this page were made by [[Contributors|John Simanyi]]''' |
Latest revision as of 10:38, 28 July 2015
This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Limits
Problem 1. Find the following limits:
(a)
(b)
(c)
(d)
(e)
Derivatives
Problem 2. Find the derivatives of the following functions:
(a)
(b)
(c)
Continuity and Differentiability
Problem 3. (Version I) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Problem 3. (Version II) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Implicit Differentiation
Problem 4. Find an equation for the tangent line to the function at the point .
Derivatives and Graphing
Problem 5. Consider the function
(a) Find the intervals where the function is increasing and decreasing.
(b) Find the local maxima and minima.
(c) Find the intervals on which is concave upward and concave
downward.
(d) Find all inflection points.
(e) Use the information in the above to sketch the graph of .
Asymptotes
Problem 6. Find the vertical and horizontal asymptotes of the function
Optimization
Problem 7. A farmer wishes to make 4 identical rectangular pens, each with
500 sq. ft. of area. What dimensions for each pen will use the least
amount of total fencing?
Linear Approximation
Problem 8. (a) Find the linear approximation to the function at the point .
(b) Use to estimate the value of .
Related Rates
Problem 9. A bug is crawling along the -axis at a constant speed of .
How fast is the distance between the bug and the point changing
when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).
Two Important Theorems
Problem 10. Consider the function
(a) Use the Intermediate Value Theorem to show that has at
least one zero.
(b) Use Rolle's Theorem to show that has exactly one zero.
Contributions to this page were made by John Simanyi