Difference between revisions of "022 Sample Final A, Problem 14"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}</math>. {| class="mw-col...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}</math>.
+
<span class="exam"> Find the following limit: <math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 15}</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 25: Line 25:
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>
 
|}
 
|}
 +
 +
'''Solution:'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Solution:&nbsp;
+
!Step 1:&nbsp;
 
|-
 
|-
|Usually, we first want to try simply plugging in the limit value.  In this case, we find that
+
|We take the limit and find that
 +
::<math>\lim_{x \rightarrow -3}\frac{(x)^2 + 7(x) + 12}{(x)^2 - 2(x) - 15}\,=\,\frac{9-21+12}{9+6-15}\,=\,\frac{0}{0}.</math>
 +
|-
 +
|This is an indeterminate form, and we need to apply l'Hôpital's Rule.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2:&nbsp;
 +
|-
 +
|Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find:
 
|-
 
|-
 
|
 
|
::<math>\frac{(-3)^2 + 7(-3) + 12}{(-3)^2 - 2(-3) - 14}\,=\,\frac{9-21+12}{9+6-14}\,=\,\frac{0}{1}\,=\,0.</math>
+
::<math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x \rightarrow -3}\frac{x^2 + 7x + 12}{x^2 - 5x -15}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow -3}\frac{2x + 7}{2x -2}}\\
|Since we can just plug in the value, the limit is <math style="vertical-align: 0px">0</math>.
+
&&\\
 
+
& = & \displaystyle{\frac{2(-3) + 7}{2(-3) - 2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{~1}{-8}.}
 +
\end{array}</math>
 
|}
 
|}
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 43: Line 56:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\,0.</math>
+
::<math style="vertical-align: -15px">\qquad \lim_{x \rightarrow \,-3}\frac{x^2 + 7x + 12}{x^2 - 2x - 14}\,=\, -\frac{1}{8}.</math>
 
|}
 
|}
  
  
 
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:19, 6 June 2015

Find the following limit: .

Foundations:  
When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit,
    
and
    
In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an indeterminate form, or something of the form

        or   

In this case, there are several approaches to try:
  • We can multiply the numerator and denominator by the conjugate of the denominator. This frequently results in a term that cancels, allowing us to then just plug in our limit value.
  • We can factor a term creatively. For example, can be factored as  , or as  , both of which could result in a factor that cancels in our fraction.
  • We can apply l'Hôpital's Rule: Suppose is contained in some interval . If   and   exists, and   for all   in , then .
Note that the first requirement in l'Hôpital's Rule is that the fraction must be an indeterminate form. This should be shown in your answer for any exam question.

Solution:

Step 1: 
We take the limit and find that
This is an indeterminate form, and we need to apply l'Hôpital's Rule.
Step 2: 
Applying l'Hôpital's Rule (by taking the derivative of the numerator and denominator separately), we find:
Final Answer:  


Return to Sample Exam