Difference between revisions of "022 Sample Final A, Problem 1"
Jump to navigation
Jump to search
Line 16: | Line 16: | ||
'''Solution:''' | '''Solution:''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | !Step 1: |
|- | |- | ||
− | | | + | |First, we start by finding the first partial derivatives. So we have to take the partial derivative of f(x, y)with respect to x, and the partial derivative of f(x, y)with respect to y. This gives us the following: |
|- | |- | ||
− | | | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | \frac{\partial}{\partial x} f(x, y) & = & \frac{\partial}{\partial x} \left( \frac{2xy}{x - y}\right)\\ | ||
+ | & = & \frac{2y(x - y) -2xy}{(x - y)^2}\\ | ||
+ | & = & \frac{-2y^2}{(x - y)^2} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |This gives us the derivative with respect to x. To find the derivative with respect to y, we do the following: | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \frac{\partial}{\partial y}f(x, y) & = & \frac{\partial}{\partial y}\left(\frac{2xy}{x - y}\right)\\ | ||
+ | & = & \frac{2x(x - y) +2xy}{(x - y)^2}\\ | ||
+ | & = & \frac{2x^2}{(x - y)^2} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Now we have to find the 4 second derivatives: | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \frac{\partial}{\partial x} \frac{\partial f(x, y)}{\partial x} & = & \frac{\partial}{\partial x}\left(\frac{-2y^2}{(x - y)^2}\right)\\ | ||
+ | & = & \frac{0 - 2(x - y)(-2y^2)}{(x - y)^4}\\ | ||
+ | & = & \frac{4xy^2 - 4y^3}{(x - y)^4} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \frac{\partial}{\partial y} \frac{\partial f(x, y)}{\partial x} & = & \frac{\partial}{\partial y}\left(\frac{-2y^2}{(x - y)^2}\right)\\ | ||
+ | & = & \frac{-4y(x - y)^2 +4y^2(x - y)}{(x - y)^4}\\ | ||
+ | & = & \frac{-4y(x^2 - 2xy + y^2) + 4xy^2 - 4y^3}{(x - y)^4}\\ | ||
+ | & = & \frac{-4x^2y + 12xy^2 - 8y^3}{(x - y)^4} | ||
+ | \end{array}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
|} | |} |