Difference between revisions of "008A Sample Final A, Question 4"
Jump to navigation
Jump to search
(Created page with "'''Question:''' Solve. Provide your solution in interval notation. <math>(x-4)(2x+1)(x-1)<0</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" ! Foundat...") |
|||
| (3 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! Foundations | + | ! Foundations: |
|- | |- | ||
|1) What are the zeros of the left hand side? | |1) What are the zeros of the left hand side? | ||
| Line 18: | Line 18: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! Step 1: | + | ! Step 1: |
|- | |- | ||
|The zeros of the left hand side are <math>-\frac{1}{2}</math>, 1, and 4 | |The zeros of the left hand side are <math>-\frac{1}{2}</math>, 1, and 4 | ||
| Line 24: | Line 24: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! Step 2: | + | ! Step 2: |
|- | |- | ||
|The zeros split the real number line into 4 intervals: <math>(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, 4),</math> and <math>(4, \infty)</math>. | |The zeros split the real number line into 4 intervals: <math>(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, 4),</math> and <math>(4, \infty)</math>. | ||
| Line 37: | Line 37: | ||
|- | |- | ||
|x = 5: (5 - 4)(2(5) + 1)(5 - 1) = (1)(11)(4) = 44 > 0 | |x = 5: (5 - 4)(2(5) + 1)(5 - 1) = (1)(11)(4) = 44 > 0 | ||
| + | |- | ||
| + | |<table border="1" cellspacing="0" cellpadding="6" align = "center"> | ||
| + | <tr> | ||
| + | <td align = "center"><math> x:</math></td> | ||
| + | <td align = "center"><math> x=-1 </math></td> | ||
| + | <td align = "center"><math> x= 0 </math></td> | ||
| + | <td align = "center"><math> x = 2 </math></td> | ||
| + | <td align = "center"><math> x=5 </math></td> | ||
| + | </tr> | ||
| + | <tr> | ||
| + | <td align = "center"><math> f(x):</math></td> | ||
| + | <td align = "center"><math> (-) </math></td> | ||
| + | <td align = "center"><math> (+) </math></td> | ||
| + | <td align = "center"><math> (-) </math></td> | ||
| + | <td align = "center"><math> (+) </math></td> | ||
| + | </tr> | ||
| + | </table> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! Step 3: | + | ! Step 3: |
|- | |- | ||
| − | |We take the intervals for which our test point led | + | |We take the intervals for which our test point led the function being negative, (<math>-\infty, -\frac{1}{2}</math>), and (1, 4). |
|- | |- | ||
|Since we we are solving a strict inequality we do not need to change the parenthesis to square brackets, and the final answer is <math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math> | |Since we we are solving a strict inequality we do not need to change the parenthesis to square brackets, and the final answer is <math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math> | ||
| Line 48: | Line 65: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! Final Answer: | + | ! Final Answer: |
|- | |- | ||
|<math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math> | |<math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math> | ||
Latest revision as of 20:35, 27 May 2015
Question: Solve. Provide your solution in interval notation.
| Foundations: |
|---|
| 1) What are the zeros of the left hand side? |
| 2) Can the function be both positive and negative between consecutive zeros? |
| Answer: |
| 1) The zeros are , 1, and 4. |
| 2) No. If the function is positive between 1 and 4 it must be positive for any value of x between 1 and 4. |
Solution:
| Step 1: |
|---|
| The zeros of the left hand side are , 1, and 4 |
| Step 2: | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| The zeros split the real number line into 4 intervals: and . | ||||||||||
| We now pick one number from each interval: -1, 0, 2, and 5. We will use these numbers to determine if the left hand side function is positive or negative in each interval. | ||||||||||
| x = -1: (-1 -4)(2(-1) + 1)(-1 - 1) = (-5)(-1)(-2) = -10 < 0 | ||||||||||
| x = 0: (-4)(1)(-1) = 4 > 0 | ||||||||||
| x = 2: (2-4)(2(2) + 1)(2 - 1) = (-2)(5)(1) = -10 < 0 | ||||||||||
| x = 5: (5 - 4)(2(5) + 1)(5 - 1) = (1)(11)(4) = 44 > 0 | ||||||||||
| Step 3: |
|---|
| We take the intervals for which our test point led the function being negative, (), and (1, 4). |
| Since we we are solving a strict inequality we do not need to change the parenthesis to square brackets, and the final answer is |
| Final Answer: |
|---|