Difference between revisions of "008A Sample Final A, Question 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "'''Question:''' Solve. Provide your solution in interval notation. <math>(x-4)(2x+1)(x-1)<0</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" ! Foundat...")
 
Line 2: Line 2:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Foundations
+
! Foundations: &nbsp;
 
|-
 
|-
 
|1) What are the zeros of the left hand side?
 
|1) What are the zeros of the left hand side?
Line 18: Line 18:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 1:
+
! Step 1: &nbsp;
 
|-
 
|-
 
|The zeros of the left hand side are <math>-\frac{1}{2}</math>, 1, and 4
 
|The zeros of the left hand side are <math>-\frac{1}{2}</math>, 1, and 4
Line 24: Line 24:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 2:
+
! Step 2: &nbsp;
 
|-
 
|-
 
|The zeros split the real number line into 4 intervals: <math>(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, 4),</math> and <math>(4, \infty)</math>.
 
|The zeros split the real number line into 4 intervals: <math>(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, 4),</math> and <math>(4, \infty)</math>.
Line 40: Line 40:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 3:
+
! Step 3: &nbsp;
 
|-
 
|-
 
|We take the intervals for which our test point led to a desired result, (<math>-\infty, -\frac{1}{2}</math>), and (1, 4).
 
|We take the intervals for which our test point led to a desired result, (<math>-\infty, -\frac{1}{2}</math>), and (1, 4).
Line 48: Line 48:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answer:
+
! Final Answer: &nbsp;
 
|-
 
|-
 
|<math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math>
 
|<math>(-\infty, -\frac{1}{2}) \cup (1, 4)</math>

Revision as of 22:50, 25 May 2015

Question: Solve. Provide your solution in interval notation.

Foundations:  
1) What are the zeros of the left hand side?
2) Can the function be both positive and negative between consecutive zeros?
Answer:
1) The zeros are , 1, and 4.
2) No. If the function is positive between 1 and 4 it must be positive for any value of x between 1 and 4.

Solution:

Step 1:  
The zeros of the left hand side are , 1, and 4
Step 2:  
The zeros split the real number line into 4 intervals: and .
We now pick one number from each interval: -1, 0, 2, and 5. We will use these numbers to determine if the left hand side function is positive or negative in each interval.
x = -1: (-1 -4)(2(-1) + 1)(-1 - 1) = (-5)(-1)(-2) = -10 < 0
x = 0: (-4)(1)(-1) = 4 > 0
x = 2: (2-4)(2(2) + 1)(2 - 1) = (-2)(5)(1) = -10 < 0
x = 5: (5 - 4)(2(5) + 1)(5 - 1) = (1)(11)(4) = 44 > 0
Step 3:  
We take the intervals for which our test point led to a desired result, (), and (1, 4).
Since we we are solving a strict inequality we do not need to change the parenthesis to square brackets, and the final answer is
Final Answer:  

Return to Sample Exam