Difference between revisions of "008A Sample Final A, Question 1"

From Math Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|Starting with <math>x = \log_3(y + 3) - 1</math>, we start by adding 1 to both sides to get
+
|From <math>x = \log_3(y + 3) - 1</math>, we add 1 to both sides to get
 
|-
 
|-
 
|<math>x + 1 = \log_3(y + 3).</math> Now we will use the relation in Foundations 2) to swap the log for an exponential to get
 
|<math>x + 1 = \log_3(y + 3).</math> Now we will use the relation in Foundations 2) to swap the log for an exponential to get
 
|-
 
|-
|<math>y + 3 = 3^{x+1}</math>. All we have to do is subtract 3 from both sides to yield the final answer
+
|<math>y + 3 = 3^{x+1}</math>.
 
|}
 
|}
  

Revision as of 21:55, 22 May 2015

Question: Find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \log_3(x+3)-1}


Foundations
1) How would you find the inverse for a simpler function like Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = 3x + 5} ?
2) How do you remove the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_3} in the following equation: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_3(x) = y?}
Answers:
1) you would replace f(x) by y, switch x and y, and finally solve for y.
2) By the definition of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log_3} when we write the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \log_3(x)} we mean y is the number such that


Solution:

Step 1:
We start by replacing f(x) with y.
This leaves us with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \log_3(x + 3) - 1}
Step 2:
Now we swap x and y to get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \log_3(y + 3) - 1}
In the next step we will solve for y.
Step 3:
From Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \log_3(y + 3) - 1} , we add 1 to both sides to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x + 1 = \log_3(y + 3).} Now we will use the relation in Foundations 2) to swap the log for an exponential to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y + 3 = 3^{x+1}} .
Step 4:
After subtracting 3 from both sides we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = 3^{x+1}-3} . Replacing y with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x)} we arrive at the final answer that
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{-1}(x) = 3^{x+1} - 3}
Final Answer:

Return to Sample Exam