Difference between revisions of "022 Exam 2 Sample B, Problem 6"

From Math Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
|-
 
|-
 
|
 
|
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
+
::<math style="vertical-align: -90%;">\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>&thinsp; for <math style="vertical-align: -27%;">n\neq -1</math>,
 
|-
 
|-
 
|For setup of the problem we need to integrate the region between the x - axis, the curve, <math style="vertical-align: 0%">x = 0</math> (the y-axis), and <math style="vertical-align: 0%">x = 2</math>.
 
|For setup of the problem we need to integrate the region between the x - axis, the curve, <math style="vertical-align: 0%">x = 0</math> (the y-axis), and <math style="vertical-align: 0%">x = 2</math>.

Revision as of 16:29, 17 May 2015

Find the area under the curve of  between the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} -axis and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 2} .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^n dn = \frac{x^{n+1}}{n+1} + C}   for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\neq -1} ,
For setup of the problem we need to integrate the region between the x - axis, the curve, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0} (the y-axis), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 2} .

 Solution:

Step 1:  
Set up the integral:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{2} 6x^2 + 2x \,dx.}
Step 2:  
Using the power rule we have:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int _0^2 6x^2+2x \,dx \,=\, 6\cdot \frac{x^3}{3}+2\cdot \frac{x^2}{2} \Bigr|_{x\,=\,0}^2\,=\,2x^3+x^2 \Bigr|_{x\,=\,0}^2. }
Step 3:  
Finally, we need to evaluate:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x^3 + x^2 \Bigr|_{x\,=\,0}^2 = (2(2)^3+(2)^2)-(0+0) = 20.}
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{\,2} 6x^2 + 2x \,dx\,=\,20.}

Return to Sample Exam