Difference between revisions of "Prototype questions"

From Math Wiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 21: Line 21:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed"
+
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 31: Line 31:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 47: Line 47:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 65: Line 65:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed"
+
{|class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
 
|Take the intersection (i.e. common points) of Steps 2 and 3. <math>( - \infty, -1) \cup (2, \infty)</math>
 
|Take the intersection (i.e. common points) of Steps 2 and 3. <math>( - \infty, -1) \cup (2, \infty)</math>
 
|}
 
|}
 
 
 
 
 
  
  
Line 89: Line 84:
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
 
f(x) = <math> \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} </math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class= "wikitable mw-collapsible mw-collapsed"
 
! Foundations
 
! Foundations
 
|-
 
|-
Line 108: Line 103:
 
Solution:
 
Solution:
  
{| class = "mw-collapsible mw-collapsed wikitable"
+
{| class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 1:
 
! Step 1:
 
|-
 
|-
Line 118: Line 113:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 2:
 
! Step 2:
 
|-
 
|-
Line 134: Line 129:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 3:
 
! Step 3:
 
|-
 
|-
Line 152: Line 147:
 
|}
 
|}
  
{|class = "mw-collapsible mw-collapsed wikitable"
+
{|class = "mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Step 4:
 
! Step 4:
 
|-
 
|-
Line 176: Line 171:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 182: Line 177:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 189: Line 184:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed"
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-
Line 218: Line 213:
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
 
<math>f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}</math>
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 1
 
! Hint 1
 
|-
 
|-
Line 224: Line 219:
 
|}
 
|}
  
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Hint 2
 
! Hint 2
 
|-
 
|-
Line 231: Line 226:
  
 
Solution:
 
Solution:
{| class="mw-collapsible mw-collapsed wikitable"
+
{| class="mw-collapsible mw-collapsed wikitable" style = "text-align:left;"
 
! Solution
 
! Solution
 
|-
 
|-

Latest revision as of 19:01, 24 February 2015

2. Find the domain of the following function. Your answer should use interval notation. f(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} }

Foundations
The foundations:
What is the domain of g(x) = ?
The function is undefined if the denominator is zero, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq } 0.
Rewriting" Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \neq 0} " in interval notation( -Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} , 0) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} (0, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} )
What is the domain of h(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x} } ?
The function is undefined if we have a negative number inside the square root, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ge} 0


Solution:

Step 1:
Factor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 = (x + 1) (x - 2)}
So we can rewrite f(x) as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}}
Step 2:
When does the denominator of f(x) = 0?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(x + 1)(x - 2)} = 0}
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefiend when the denominator is zero, x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} -1 and x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 2
Step 3:
What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x) = \sqrt{(x + 1)(x - 2)}}
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1] \cup [2, \infty)}
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ( - \infty, -1) \cup (2, \infty)}






2. Find the domain of the following function. Your answer should use interval notation. f(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\frac{1}{\sqrt{x^2-x-2}}} }

Foundations
The foundations:
What is the domain of g(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{x}} ?
The function is undefined if the denominator is zero, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq } 0.
Rewriting"x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 0" in interval notation( -Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} , 0) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} (0, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty} )
What is the domain of h(x) = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x} } ?
The function is undefined if we have a negative number inside the square root, so x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ge} 0


Solution:

Step 1:
Factor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 = (x + 1) (x - 2)}
So we can rewrite f(x) as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{(x+1)(x-2)}}}}
Step 2:
When does the denominator of f(x) = 0?
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(x + 1)(x - 2)} = 0}
(x + 1)(x - 2) = 0
(x + 1) = 0 or (x - 2) = 0
x = -1 or x = 2
So, since the function is undefinend when the denominator is zero, x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} -1 and x Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \neq} 2
Step 3:
What is the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x) = \sqrt{(x + 1)(x - 2)}}
critical points: x = -1, x = 2
Test points:
x = -2: (-2 + 1)(-2 - 2): (-1)(-4) = 4 > 0
x = 0: (0 + 1)(0 - 2) = -2 < 0
x = 3: (3 + 1)(3 - 2): 4*1 = 4 > 0
So the domain of h(x) is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1] \cup [2, \infty)}
Step 4:
Take the intersection (i.e. common points) of Steps 2 and 3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ( - \infty, -1) \cup (2, \infty)}









2. Find the domain of the following function. Your answer should use interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}}

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-x-2 > 0}

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2)(x+1)>0}
Now we use a sign chart with test numbers -2, 0, and 3
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0: (0 - 2)(0 + 1) = (-2)(1) = -2 < 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 3: (3 - 2)(3 + 1)= (1)(4) = 4 > 0}
So the solution is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty, -1) \cup (2, \infty)}





2. Find the domain of the following function. Your answer should use interval notation. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \displaystyle{\frac{1}{\sqrt{x^2-x-2}}}}

Hint 1
Which x-values lead to division by 0 or square rooting a negative number
Hint 2
Use a sign chart to determine for which x-values Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2-x-2 > 0}

Solution:

Solution
Since the domain is the collection of x-values for which we don't divide by zero or square root a negative number we want to solve the inequality Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 - x - 2 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-2)(x+1)>0}
Now we use a sign chart with test numbers -2, 0, and 3
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = -2: (-2 - 2)(-2 + 1) = (-4)(-1) = 4 > 0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0: (0 - 2)(0 + 1) = (-2)(1) = -2 < 0}
So the solution is