Difference between revisions of "022 Exam 2 Sample A, Problem 6"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Find the area under the curve of <math style="vertical-align: -60%">y\,=\,\frac{8}{\sqrt{x}}</math> between <math style="vertical-align: -5%...") |
|||
| (6 intermediate revisions by the same user not shown) | |||
| Line 4: | Line 4: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |For solving the problem, we only require the use of the power rule for integration: |
| − | |||
| − | |||
|- | |- | ||
| + | | | ||
| + | ::<math style="vertical-align: -70%;">\int x^n\,dx\,=\,\frac{x^{n+1}}{n+1} +C,</math>  for <math style="vertical-align: -25%;">n\neq -1.</math> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | |Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: -4%">x = 1</math> and <math style="vertical-align: -2%">x = 4</math>. |
| − | |||
| − | |||
|} | |} | ||
| Line 38: | Line 20: | ||
|Set up the integral: | |Set up the integral: | ||
|- | |- | ||
| − | |<math>\int_1^4 \frac{8}{\sqrt{x}} dx</math> | + | | |
| + | ::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx.</math> | ||
|} | |} | ||
| Line 47: | Line 30: | ||
|- | |- | ||
| | | | ||
| − | ::<math> | + | ::<math>\begin{array}{rcl} |
| − | \begin{array}{rcl} | + | \displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\ |
| − | \int_1^4 \frac{8}{\sqrt{x}}dx & = & \frac{x^{1/2}} | + | \\ |
| + | & = & \displaystyle{\frac{8 x^{1/2}}{1/2} \Bigr|_{x=1}^4}\\ | ||
| + | \\ | ||
| + | & = & 16x^{1/2} \Bigr|_{x=1}^4. | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
| Line 56: | Line 42: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | | Now we need to | + | | Now we need to evaluate to get: |
|- | |- | ||
| − | | | + | | |
| − | + | ::<math>16x^{1/2} \Bigr|_{x=1}^4\,=\,16\cdot 4^{1/2} - 16\cdot 1^{1/2} \,=\, 32 - 16 \,=\, 16.</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
| Line 70: | Line 51: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |<math>\ | + | | |
| + | ::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,16.</math> | ||
|} | |} | ||
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 06:54, 16 May 2015
Find the area under the curve of between and .
| Foundations: |
|---|
| For solving the problem, we only require the use of the power rule for integration: |
|
| Geometrically, we need to integrate the region between the -axis, the curve, and the vertical lines and . |
Solution:
| Step 1: |
|---|
| Set up the integral: |
|
|
| Step 2: |
|---|
| Using the power rule we have: |
|
|
| Step 3: |
|---|
| Now we need to evaluate to get: |
|
|
| Final Answer: |
|---|
|
|