Difference between revisions of "022 Exam 2 Sample A, Problem 3"

From Math Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 24: Line 24:
 
|-
 
|-
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
::<math>\int \frac{1}{3x + 2} \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
+
::<math>\int \frac{1}{3x + 2}\,dx \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
 
|}
 
|}
  
Line 30: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|We can now take the integral remembering the special rule:
+
|We can now take the integral remembering the special rule resulting in natural log:
 
|-
 
|-
 
|
 
|
Line 39: Line 39:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -5%">u = 3x + 2</math>
+
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -5%">u = 3x + 2</math> to find
 
|-
 
|-
| to find&nbsp; <math>\frac{\log(u)}{3} = \frac{\log(3x + 2)}{3}.</math>
+
|
 +
::<math>\frac{\log(u)}{3} = \frac{\log(3x + 2)}{3}.</math>
 
|}
 
|}
  
Line 47: Line 48:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since this integral is an indefinite integral we have to remember to add a constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
+
|Since this integral is an indefinite integral, we have to remember to add a constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
 
|}
 
|}
  

Latest revision as of 06:47, 16 May 2015

Find the antiderivative of


Foundations:  
This problem requires two rules of integration. In particular, you need
Integration by substitution (u - sub): If   is a differentiable functions whose range is in the domain of , then
We also need the derivative of the natural log since we will recover natural log from integration:

 Solution:

Step 1:  
Use a u-substitution with This means , or . After substitution we have
Step 2:  
We can now take the integral remembering the special rule resulting in natural log:
Step 3:  
Now we need to substitute back into our original variables using our original substitution to find
Step 4:  
Since this integral is an indefinite integral, we have to remember to add a constant  at the end.
Final Answer:  

Return to Sample Exam