Difference between revisions of "022 Exam 2 Sample A, Problem 8"

From Math Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 +
[[File:022_2_A_8.png|right|400px]]
 
<span class="exam">Use differentials to approximate the change in profit given <math style="vertical-align: -5%">x = 10</math>&thinsp; units and <math style="vertical-align: 0%">dx = 0.2</math>&thinsp; units, where profit is given by  <math style="vertical-align: -23%">P(x) = -4x^2 + 90x - 128</math>.
 
<span class="exam">Use differentials to approximate the change in profit given <math style="vertical-align: -5%">x = 10</math>&thinsp; units and <math style="vertical-align: 0%">dx = 0.2</math>&thinsp; units, where profit is given by  <math style="vertical-align: -23%">P(x) = -4x^2 + 90x - 128</math>.
  
Line 24: Line 25:
 
!Step 1: &nbsp;
 
!Step 1: &nbsp;
 
|-
 
|-
|
+
|First, we must find the derivative.  We have <math style="vertical-align: -23%">P'(x) = -8x + 90</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|We need the derivative at our initial point, or <math style="vertical-align: -15%">x_0 = 10</math>.  This is
 
|-
 
|-
 
|
 
|
 +
::<math>P'(x_0)\,=\,P'(10) \,=\, -8(10) + 90\,=\,10.</math>
 +
|}
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Finally, we plug in the values to find
 +
|-
 +
|
 +
::<math>dy\,=\,P'(x_0)\cdot dx\,=\,10\cdot 0.2\,=\,2.</math>
 +
|-
 +
|Note that if a teacher gives you units (thousands of dollars, dollars, cubits...), you should include them in your answer.
 +
|}
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
|
 +
::<math>dy\,=\,2.</math>
 
|}
 
|}
 
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 20:13, 15 May 2015

022 2 A 8.png

Use differentials to approximate the change in profit given   units and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx = 0.2}   units, where profit is given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x) = -4x^2 + 90x - 128} .

Foundations:  
A differential is a method of linearly approximating the change of a function. We use the derivative of the function at an initial point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} as the slope of a line, and use the standard relation
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\,=\,\frac{\Delta y}{\Delta x},}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta y} represents the change in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} values, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x} represents the change in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} values. Due to the use of the derivative Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'\left(x_0\right)} as the slope, we usually rewrite this using Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx} to indicate the relative changes. Thus,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x_0)\,=\,m\,=\,\frac{dy}{dx}.}
We can then rearrange this to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy=f'(x_0)\cdot dx.}

 Solution:

Step 1:  
First, we must find the derivative. We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'(x) = -8x + 90} .
Step 2:  
We need the derivative at our initial point, or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 = 10} . This is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'(x_0)\,=\,P'(10) \,=\, -8(10) + 90\,=\,10.}
Step 3:  
Finally, we plug in the values to find
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,P'(x_0)\cdot dx\,=\,10\cdot 0.2\,=\,2.}
Note that if a teacher gives you units (thousands of dollars, dollars, cubits...), you should include them in your answer.
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,2.}

Return to Sample Exam