Difference between revisions of "022 Exam 2 Sample A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|For solving the problem we only require the use of the power rule for integration:
+
|For solving the problem, we only require the use of the power rule for integration:
 
|-
 
|-
|<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
+
|
 +
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
 
|-
 
|-
 
|For setup of the problem we need to integrate the region between the x - axis, the curve, x = 1, and x = 4.
 
|For setup of the problem we need to integrate the region between the x - axis, the curve, x = 1, and x = 4.
Line 18: Line 19:
 
|Set up the integral:
 
|Set up the integral:
 
|-
 
|-
|<math>\int_1^4 \frac{8}{\sqrt{x}} dx</math>
+
|
 +
::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx.</math>
 
|}
 
|}
  
Line 28: Line 30:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\int_1^4 \frac{8}{\sqrt{x}}dx & = & \frac{8 x^{1/2}}{2} \vert_1^4\\
+
\displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\
& = & 4x^{1/2} \vert_1^4
+
\\
 +
& = & \displaystyle{\frac{8 x^{1/2}}{2} \Bigr|_{x=1}^4}\\
 +
\\
 +
& = & 4x^{1/2} \Bigr|_{x=1}^4.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 38: Line 43:
 
| Now we need to evaluate to get:
 
| Now we need to evaluate to get:
 
|-
 
|-
| <math>4\cdot 4^{1/2} - 4\cdot 1^{1/2} = 8 - 4 = 4</math>  
+
|
 +
::<math>4x^{1/2}  \Bigr|_{x=1}^4\,=\,4\cdot 4^{1/2} - 4\cdot 1^{1/2} \,=\, 8 - 4 \,=\, 4.</math>  
 
|}
 
|}
  
Line 44: Line 50:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|4
+
|
 +
::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,4.</math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:36, 15 May 2015

Find the area under the curve of    between and .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
For setup of the problem we need to integrate the region between the x - axis, the curve, x = 1, and x = 4.

 Solution:

Step 1:  
Set up the integral:
Step 2:  
Using the power rule we have:
Step 3:  
Now we need to evaluate to get:
Final Answer:  

Return to Sample Exam