Difference between revisions of "022 Exam 2 Sample A, Problem 4"

From Math Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -70%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,</math>&thinsp; for <math style="vertical-align: -25%;">n\neq 0</math>.
+
::<math style="vertical-align: -70%;">\int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,</math>&thinsp; for <math style="vertical-align: -20%;">n\neq 0</math>.
 
|}
 
|}
  

Revision as of 15:21, 15 May 2015

Find the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int (3x+2)^4\,dx.}

Foundations:  
This problem requires three rules of integration. In particular, you need
Integration by substitution (u - sub): If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = g(x)}   is a differentiable functions whose range is in the domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , then
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int g'(x)f(g(x)) dx = \int f(u) du.}
We also need our power rule for integration:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^n dx \,=\, \frac{x^{n + 1}}{n + 1}+C,}   for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\neq 0} .

 Solution:

Step 1:  
Use a u-substitution with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = 3x + 2.} This means Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du = 3\,dx} , or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=du/3} . After substitution we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \left(3x + 2\right)^4 \,dx \,=\, \int u^4 \,\frac{du}{3}\,=\,\frac{1}{3}\int u^4\,du.}
Step 2:  
We can no apply the power rule for integration:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}\int u^4\,du \,=\, \frac{1}{3}\cdot\frac{u^5}{5}\,=\,\frac{u^5}{15}.}
Step 3:  
Since our original function is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , we must substitute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} back into the result from step 2:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u^5}{5} \,=\, \frac{(3x + 2)^5}{5}.}
Step 4:  
As will all indefinite integrals, don't forget the constant  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} at the end.
Final Answer:  
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \left(3x + 2\right)^4\,dx\,=\, \frac{(3x + 2)^5}{15} + C.}

Return to Sample Exam