Difference between revisions of "022 Exam 2 Sample A, Problem 3"

From Math Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
|-
 
|-
 
|
 
|
::<math>\left(ln(x)\right)' \,=\, \frac{1}{x}.</math>
+
::<math>\left(ln(x)\right)' \,=\, \frac{1}{x}</math>
 
|}
 
|}
  
Line 24: Line 24:
 
|-
 
|-
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
::<math>\int \frac{1}{3x + 2}\,dx \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
+
::<math>\int \frac{1}{3x + 2} \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
 
|}
 
|}
  
Line 32: Line 32:
 
|We can now take the integral remembering the special rule:
 
|We can now take the integral remembering the special rule:
 
|-
 
|-
|
+
|<math>\frac{1}{3}\int\frac{1}{u}\,du. \,=\, \frac{\log(u)}{3}.</math>
::<math>\frac{1}{3}\int\frac{1}{u}\,du \,=\, \frac{\log(u)}{3}.</math>
 
 
|}
 
|}
  
Line 39: Line 38:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -6%">u = 3x + 2</math>
+
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -10%">u = 3x + 2</math>
 
|-
 
|-
 
| to find&thinsp; <math>\frac{\log(u)}{3} = \frac{\log(3x + 2)}{3}.</math>
 
| to find&thinsp; <math>\frac{\log(u)}{3} = \frac{\log(3x + 2)}{3}.</math>
Line 47: Line 46:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
| Since this integral is an indefinite integral we have to remember to add a constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
+
|Since this integral is an indefinite integral we have to remember to add a constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
 
|}
 
|}
  
Line 54: Line 53:
 
|-
 
|-
 
|
 
|
::<math>\int \frac{1}{3x + 2}\, dx \,=\, \frac{\ln(3x + 2)}{3} + C.</math>
+
::<math>\int \frac{1}{3x + 2} dx \,=\, \frac{\ln(3x + 2)}{3} + C.</math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:17, 15 May 2015

Find the antiderivative of


Foundations:  
This problem requires two rules of integration. In particular, you need
Integration by substitution (u - sub): If is a differentiable functions whose range is in the domain of , then
We also need the derivative of the natural log since we will recover natural log from integration:

 Solution:

Step 1:  
Use a u-substitution with This means , or . After substitution we have
Step 2:  
We can now take the integral remembering the special rule:
Step 3:  
Now we need to substitute back into our original variables using our original substitution
to find 
Step 4:  
Since this integral is an indefinite integral we have to remember to add a constant  at the end.
Final Answer:  

Return to Sample Exam