Difference between revisions of "022 Exam 2 Sample A, Problem 1"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
|<br> <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math> | |<br> <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math> | ||
|- | |- | ||
− | |<br>'''The Quotient Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: - | + | |<br>'''The Quotient Rule:''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -20%;">g</math> are differentiable functions and <math style="vertical-align: -21%;">g(x) \neq 0</math> , then |
|- | |- | ||
|<br> <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math> | |<br> <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math> | ||
Line 32: | Line 32: | ||
::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math> | ::<math>f(x)\,=\,\frac{(x+5)(x-1)}{x},</math> | ||
|- | |- | ||
− | |we then have <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math> | + | |we then have  <math style="vertical-align: -21%">y\,=\,g\circ f(x)\,=\,g\left(f(x)\right).</math> |
|} | |} | ||
Line 38: | Line 38: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We can now apply all three advanced techniques. For | + | |We can now apply all three advanced techniques. For <math style="vertical-align: -20%">f'(x)</math>, we must use both the quotient and product rule to find |
+ | |- | ||
+ | |<br> | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | f'(x) & = & \displaystyle{\frac{\left((x+5)(x-1)\right)'x-(x+5)(x-1)(x)'}{x^{2}}}\\ | ||
+ | \\ | ||
+ | & = & \displaystyle{\frac{\left[x^{2}+4x-5\right]'x-(x^{2}+4x-5)(x)'}{x^{2}}}\\ | ||
+ | \\ | ||
+ | & = & \displaystyle{\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}}\\ | ||
+ | \\ | ||
+ | & = & \displaystyle{\frac{2x^{2}-5x-x^{2}-4x+5}{x^{2}}}\\ | ||
+ | \\ | ||
+ | & = & \displaystyle{\frac{x^{2}-9x+5}{x^{2}}}. | ||
+ | \end{array}</math> | ||
| | | | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! | + | !Step 3: |
|- | |- | ||
− | |We can | + | |We can now use the chain rule to find<br> |
|- | |- | ||
− | |& | + | | |
+ | ::<math>\begin{array}{rcl} | ||
+ | y' & = & \left(g\circ f\right)'(x)\\ | ||
+ | \\ | ||
+ | & = & g'\left(f(x)\right)\cdot f'(x)\\ | ||
+ | \\& = & \displaystyle{\frac{x}{(x+5)(x-1)}\cdot\frac{x^{2}-9x+5}{x^{2}}}\\ | ||
+ | \\ | ||
+ | & = & \displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.} | ||
+ | \end{array}</math> | ||
+ | Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. In this case, we could write the answer as<br> | ||
|- | |- | ||
− | | | + | | |
+ | ::<math>y'=\displaystyle {\frac{x}{(x+5)(x-1)}\cdot\frac{(2x+5)x-(x^{2}+4x-5)(1)}{x^{2}}.}</math> | ||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
|- | |- | ||
− | | | + | |<math>y'\,=\,\displaystyle{\frac{x^{2}-9x+5}{x^{3}+4x^{2}-5x}.}</math> |
|} | |} | ||
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] |
Revision as of 14:47, 14 May 2015
Find the derivative of
Foundations: |
---|
This problem requires several advanced rules of differentiation. In particular, you need |
The Chain Rule: If and are differentiable functions, then |
The Product Rule: If and are differentiable functions, then |
The Quotient Rule: If and are differentiable functions and , then |
Solution:
Step 1: |
---|
We need to identify the composed functions in order to apply the chain rule. Note that if we set , and |
|
we then have |
Step 2: | |
---|---|
We can now apply all three advanced techniques. For , we must use both the quotient and product rule to find | |
Step 3: |
---|
We can now use the chain rule to find |
Note that many teachers do not prefer a cleaned up answer, and may request that you do not simplify. In this case, we could write the answer as |
|
Final Answer: |
---|