Difference between revisions of "009C Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Line 19: | Line 19: | ||
::<math>\left|\frac{a_{n+1}}{a_n}\right|<1.</math> | ::<math>\left|\frac{a_{n+1}}{a_n}\right|<1.</math> | ||
|- | |- | ||
− | When we do, the interval will be <math style="vertical-align: -20%">(c-r,c+r)</math>. However, the boundary values for <math style="vertical-align: 0%">x</math>, <math style="vertical-align: 0%">c-r</math> and <math style="vertical-align: -8%">c+r</math> must be tested individually for convergence. Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may | + | When we do, the interval will be <math style="vertical-align: -20%">(c-r,c+r)</math>. However, the boundary values for <math style="vertical-align: 0%">x</math>, <math style="vertical-align: 0%">c-r</math> and <math style="vertical-align: -8%">c+r</math> must be tested individually for convergence. Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may open, half-open or closed. |
|} | |} | ||
Line 26: | Line 26: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!(a): | !(a): | ||
+ | |- | ||
+ | |We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>, | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(-1)^{n+1}x^{n+1}}{n+2}}{\frac{(-1)^{n}x^{n}}{n+1}}\right|\\ | ||
+ | \\ | ||
+ | & = & \lim_{n\rightarrow\infty}\left|x\cdot\frac{n+1}{n+2}\right|\\ | ||
+ | \\ | ||
+ | & = & |x|\cdot\lim_{n\rightarrow\infty}\left|\frac{n+1}{n+2}\right|\\ | ||
+ | \\ | ||
+ | & = & |x|<1. | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |In this case, the radius is 1, and the interval will be centered at 0. We then need to take a look at the boundary points. If <math style="vertical-align: -20%">x=1,</math> then | ||
+ | |- | ||
+ | | | ||
+ | ::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}}{n+1},</math> | ||
+ | |- | ||
+ | |so the series is an alternating harmonic series which converges. On the other hand, if <math style="vertical-align: -20%">x=-1,</math> then | ||
|- | |- | ||
| | | | ||
+ | ::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}(-1)^{n}}{n+1}\,=\,\frac{1}{n+1},</math> | ||
+ | |- | ||
+ | |a standard harmonic series which does not converge. Thus, the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!(b): | !(b): | ||
+ | |- | ||
+ | |We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>, | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(x+1)^{n+1}}{(n+1)^{2}}}{\frac{(x+1)^{n}}{n^{2}}}\right|\\ | ||
+ | \\ | ||
+ | & = & \lim_{n\rightarrow\infty}\left|(x+1)\cdot\left(\frac{n}{n+1}\right)^{2}\right|\\ | ||
+ | \\ | ||
+ | & = & |x+1|\cdot\lim_{n\rightarrow\infty}\left(\frac{n}{n+1}\right)^{2}\\ | ||
+ | \\ | ||
+ | & = & |x+1|<1. | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |In this case, the radius is 1, and the interval will be centered at <math style="vertical-align: -5%">x=-1</math>, or when <math style="vertical-align: -10%">x+1=0</math>. We then need to take a look at the boundary points. If <math style="vertical-align: 0%">x=-2</math> or <math style="vertical-align: 0%">x=0</math>, then | ||
|- | |- | ||
| | | | ||
+ | ::<math>\left|a_{n}\right|\,=\,\left|\frac{(x+1)^{n}}{n^{2}}\right|\,=\,\frac{1}{n^{2}},</math> | ||
+ | |- | ||
+ | |which defines a p-series with <math style="vertical-align: -20%">p=2</math>. Thus, the series defined by each boundary point is absolutely convergent (and therefore convergent), and the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>. | ||
+ | |||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |For (a), the radius is 1 and the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>. |
+ | |- | ||
+ | |For (b), the radius is also 1, but the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>. | ||
|} | |} | ||
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:50, 27 April 2015
Find the radius of convergence and the interval of convergence of the series.
- (a) (6 points)
- (b) (6 points)
Foundations: |
---|
When we are asked to find the radius of convergence, we are given a series where |
|
where and are functions of and respectively, and is a constant (frequently zero). We need to find a bound (radius) on such that whenever , the ratio test |
|
Solution:
(a): |
---|
We need to choose a radius such that whenever , |
|
In this case, the radius is 1, and the interval will be centered at 0. We then need to take a look at the boundary points. If then |
|
so the series is an alternating harmonic series which converges. On the other hand, if then |
|
a standard harmonic series which does not converge. Thus, the interval of convergence is . |
(b): |
---|
We need to choose a radius such that whenever , |
|
In this case, the radius is 1, and the interval will be centered at , or when . We then need to take a look at the boundary points. If or , then |
|
which defines a p-series with . Thus, the series defined by each boundary point is absolutely convergent (and therefore convergent), and the interval of convergence is . |
Final Answer: |
---|
For (a), the radius is 1 and the interval of convergence is . |
For (b), the radius is also 1, but the interval of convergence is . |