Difference between revisions of "009C Sample Midterm 3, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
::<math>\left|\frac{a_{n+1}}{a_n}\right|<1.</math>
 
::<math>\left|\frac{a_{n+1}}{a_n}\right|<1.</math>
 
|-
 
|-
When we do, the interval will be <math style="vertical-align: -20%">(c-r,c+r)</math>.  However, the boundary values for <math style="vertical-align: 0%">x</math>, <math style="vertical-align: 0%">c-r</math> and <math style="vertical-align: -8%">c+r</math> must be tested individually for convergence.  Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may not be strictly open.
+
When we do, the interval will be <math style="vertical-align: -20%">(c-r,c+r)</math>.  However, the boundary values for <math style="vertical-align: 0%">x</math>, <math style="vertical-align: 0%">c-r</math> and <math style="vertical-align: -8%">c+r</math> must be tested individually for convergence.  Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may open, half-open or closed.
 
|}
 
|}
  
Line 26: Line 26:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a): &nbsp;
 
!(a): &nbsp;
 +
|-
 +
|We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>,
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(-1)^{n+1}x^{n+1}}{n+2}}{\frac{(-1)^{n}x^{n}}{n+1}}\right|\\
 +
\\
 +
& = & \lim_{n\rightarrow\infty}\left|x\cdot\frac{n+1}{n+2}\right|\\
 +
\\
 +
& = & |x|\cdot\lim_{n\rightarrow\infty}\left|\frac{n+1}{n+2}\right|\\
 +
\\
 +
& = & |x|<1.
 +
\end{array}</math>
 +
|-
 +
|In this case, the radius is 1, and the interval will be centered at 0. We then need to take a look at the boundary points. If <math style="vertical-align: -20%">x=1,</math> then
 +
|-
 +
|
 +
::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}}{n+1},</math>
 +
|-
 +
|so the series is an alternating harmonic series which converges. On the other hand, if <math style="vertical-align: -20%">x=-1,</math> then
 
|-
 
|-
 
|
 
|
 +
::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}(-1)^{n}}{n+1}\,=\,\frac{1}{n+1},</math>
 +
|-
 +
|a standard harmonic series which does not converge. Thus, the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(b): &nbsp;
 
!(b): &nbsp;
 +
|-
 +
|We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>,
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(x+1)^{n+1}}{(n+1)^{2}}}{\frac{(x+1)^{n}}{n^{2}}}\right|\\
 +
\\
 +
& = & \lim_{n\rightarrow\infty}\left|(x+1)\cdot\left(\frac{n}{n+1}\right)^{2}\right|\\
 +
\\
 +
& = & |x+1|\cdot\lim_{n\rightarrow\infty}\left(\frac{n}{n+1}\right)^{2}\\
 +
\\
 +
& = & |x+1|<1.
 +
\end{array}</math>
 +
|-
 +
|In this case, the radius is 1, and the interval will be centered at <math style="vertical-align: -5%">x=-1</math>, or when <math style="vertical-align: -10%">x+1=0</math>. We then need to take a look at the boundary points. If <math style="vertical-align: 0%">x=-2</math> or <math style="vertical-align: 0%">x=0</math>, then
 
|-
 
|-
 
|
 
|
 +
::<math>\left|a_{n}\right|\,=\,\left|\frac{(x+1)^{n}}{n^{2}}\right|\,=\,\frac{1}{n^{2}},</math>
 +
|-
 +
|which defines a p-series with <math style="vertical-align: -20%">p=2</math>. Thus, the series defined by each boundary point is absolutely convergent (and therefore convergent), and the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>.
 +
 
|}
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|
+
|For (a), the radius is 1 and the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>.
 +
|-
 +
|For (b), the radius is also 1, but the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>.
 
|}
 
|}
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:50, 27 April 2015

Find the radius of convergence and the interval of convergence of the series.

(a) (6 points)     
(b) (6 points)     
When we do, the interval will be . However, the boundary values for , and must be tested individually for convergence. Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may open, half-open or closed.
Foundations:  
When we are asked to find the radius of convergence, we are given a series where
where and are functions of and respectively, and is a constant (frequently zero). We need to find a bound (radius) on such that whenever , the ratio test

 Solution:

(a):  
We need to choose a radius such that whenever ,
In this case, the radius is 1, and the interval will be centered at 0. We then need to take a look at the boundary points. If then
so the series is an alternating harmonic series which converges. On the other hand, if then
a standard harmonic series which does not converge. Thus, the interval of convergence is .
(b):  
We need to choose a radius such that whenever ,
In this case, the radius is 1, and the interval will be centered at , or when . We then need to take a look at the boundary points. If or , then
which defines a p-series with . Thus, the series defined by each boundary point is absolutely convergent (and therefore convergent), and the interval of convergence is .
Final Answer:  
For (a), the radius is 1 and the interval of convergence is .
For (b), the radius is also 1, but the interval of convergence is .

Return to Sample Exam