Difference between revisions of "022 Exam 1 Sample A, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"><span class="biglink"> Problem 4. </span> Determine the intervals where the function  <math style="vert...")
 
m
Line 5: Line 5:
 
! Foundations: &nbsp;  
 
! Foundations: &nbsp;  
 
|-
 
|-
|When a first derivative is positive, the function is increasing (heading uphill).  When the first derivative is negative, it is decreasing (heading downhill).  When the first derivative is <math style="vertical-align: 0%">0</math>, it is not quite so clear.  If <math style="vertical-align: -25%">f'(z)=0</math> at a point <math style="vertical-align: 0%">z</math>, and the first derivative splits around it (either <math style="vertical-align: -25%">f'(x)<0</math>&thinsp; for <math style="vertical-align: 0%">x<z</math> and <math style="vertical-align: -25%">f'(x)>0</math>&thinsp; for <math style="vertical-align: 0%">x > z</math>, or <math style="vertical-align: -25%">f'(x) > 0</math>&thinsp; for <math style="vertical-align: 0%">x< z</math> and <math style="vertical-align: -25%">f'(x) < 0</math>&thinsp; for <math style="vertical-align: 0%">x> z</math>), then the point <math style="vertical-align: -20%">(z,f(z))</math> is a '''local maximum''' or '''minimum''', respectively, and is neither increasing or decreasing at that point.
+
|When a first derivative is positive, the function is increasing (heading uphill).  When the first derivative is negative, it is decreasing (heading downhill).  When the first derivative is <math style="vertical-align: 0%">0</math>, it is not quite so clear.  If <math style="vertical-align: -20%">f'(z)=0</math> at a point <math style="vertical-align: 0%">z</math>, and the first derivative splits around it (either <math style="vertical-align: -20%">f'(x)<0</math>&thinsp; for <math style="vertical-align: 0%">x<z</math> and <math style="vertical-align: -20%">f'(x)>0</math>&thinsp; for <math style="vertical-align: 0%">x > z</math>, or <math style="vertical-align: -20%">f'(x) > 0</math>&thinsp; for <math style="vertical-align: 0%">x< z</math> and <math style="vertical-align: -20%">f'(x) < 0</math>&thinsp; for <math style="vertical-align: 0%">x> z</math>), then the point <math style="vertical-align: -20%">(z,f(z))</math> is a '''local maximum''' or '''minimum''', respectively, and is neither increasing or decreasing at that point.
 
<br>
 
<br>
 
|-
 
|-

Revision as of 20:27, 12 April 2015

 Problem 4.  Determine the intervals where the function  is increasing or decreasing.

Foundations:  
When a first derivative is positive, the function is increasing (heading uphill). When the first derivative is negative, it is decreasing (heading downhill). When the first derivative is , it is not quite so clear. If at a point , and the first derivative splits around it (either   for and   for , or   for and   for ), then the point is a local maximum or minimum, respectively, and is neither increasing or decreasing at that point.


On the other hand, if the first derivative does not split around , then it will be increasing or decreasing at that point based on the derivative of the adjacent intervals. For example, has the derivative . Thus, , but is strictly positive every else. As a result, is increasing on .

 Solution:

Find the Derivatives and Their Roots:  
Note that

Return to Sample Exam