Difference between revisions of "009A Sample Final A, Problem 3"
Jump to navigation
Jump to search
m |
|||
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span | + | [[File:009A_SF_A_3.png|right|230px|frame|Both functions with constants chosen to provide continuity.]] |
+ | |||
+ | <span class="exam">3. (Version I) Consider the following function: | ||
<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | <math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | ||
<br> | <br> | ||
− | + | <table border="0" class="exam"> | |
− | < | + | <tr style="vertical-align:top"> |
− | + | <td> (a) </td> | |
− | < | + | <td>Find a value of <math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math></td> |
− | 3. (Version II) Consider the following function: | + | <tr style="vertical-align:top"> |
+ | <td> (b)</td> | ||
+ | <td>With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer.</td> | ||
+ | </table> | ||
+ | |||
+ | <span class="exam">3. (Version II) Consider the following function: | ||
<math style="vertical-align: -80%;">g(x)=\begin{cases} | <math style="vertical-align: -80%;">g(x)=\begin{cases} | ||
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | \sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\ | ||
\frac{1}{4}x^{2}+C, & \quad\mbox{if }x<1. | \frac{1}{4}x^{2}+C, & \quad\mbox{if }x<1. | ||
\end{cases}</math> | \end{cases}</math> | ||
− | < | + | <table border="0" class="exam"> |
− | + | <tr style="vertical-align:top"> | |
− | < | + | <td> (a) </td> |
− | + | <td>Find a value of <math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -2.95%;">x=1.</math> | |
+ | </td> | ||
+ | <tr style="vertical-align:top"> | ||
+ | <td> (b)</td> | ||
+ | <td>With your choice of <math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? Use the definition of the derivative to motivate your answer.</td> | ||
+ | </table> | ||
+ | |||
+ | <font face="arial,helvetica"> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
! Foundations: | ! Foundations: | ||
|- | |- | ||
− | |A function <math style="vertical-align: -20%;">f</math> is continuous at a point <math style="vertical-align: - | + | |A function <math style="vertical-align: -20%;">f</math> is continuous at a point <math style="vertical-align: -14%">x_0 </math> if |
|- | |- | ||
− | | <math>\lim_{x\rightarrow | + | | <math>\lim_{x\rightarrow x_{_0}} f(x) = f\left(x_0\right).</math> |
|- | |- | ||
− | |This can be viewed as saying the left and right hand limits exist, and are equal. For problems like these, where we are trying to find a particular value for  <math style="vertical-align: 0%;">C</math>, we can just set the two descriptions of the function to be equal at the value where the definition of <math style="vertical-align: -20%;">f</math> changes. | + | |This can be viewed as saying the left and right hand limits exist, and are equal to the value of <math style="vertical-align: -20%">f</math> at <math style="vertical-align: -14%">x_0</math>. For problems like these, where we are trying to find a particular value for  <math style="vertical-align: 0%;">C</math>, we can just set the two descriptions of the function to be equal at the value where the definition of <math style="vertical-align: -20%;">f</math> changes. |
|- | |- | ||
− | |When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means | + | |When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means acknowledging that the derivative is a limit, and for a limit to exist it must agree from the left and the right. This means we must show the derivatives agree for both the descriptions of <math style="vertical-align: -20%;">f</math> at the transition point.<br> |
|} | |} | ||
Line 39: | Line 53: | ||
|we can set <math style="vertical-align: 0%;">C=-3</math>, and the function will be continuous (the left and right hand limits agree, and equal the function's value at the point <math style="vertical-align: -2%;">x=1</math> ). | |we can set <math style="vertical-align: 0%;">C=-3</math>, and the function will be continuous (the left and right hand limits agree, and equal the function's value at the point <math style="vertical-align: -2%;">x=1</math> ). | ||
− | (b) To test differentiability, we note that for <math style="vertical-align: -2%;">x | + | (b) To test differentiability, we note that for <math style="vertical-align: -2%;">x>1</math>, |
|- | |- | ||
| <math>f'(x)=\frac{1}{2\sqrt{x}},</math> | | <math>f'(x)=\frac{1}{2\sqrt{x}},</math> | ||
|- | |- | ||
− | |while for <math style="vertical-align: -3%;">x | + | |while for <math style="vertical-align: -3%;">x<1</math>, |
|- | |- | ||
| <math>f'(x)=8x.</math> | | <math>f'(x)=8x.</math> | ||
Line 49: | Line 63: | ||
|Thus | |Thus | ||
|- | |- | ||
− | | <math>\lim_{x\rightarrow 1^ | + | | <math>\lim_{x\rightarrow 1^+}f'(x)\,=\,\frac{1}{2\sqrt{1}}\,=\,\frac{1}{2},</math> |
|- | |- | ||
|but | |but | ||
|- | |- | ||
− | | <math>\lim_{x\rightarrow 1^ | + | | <math>\lim_{x\rightarrow 1^-}f'(x)\,=\,8\cdot1\,=\,8.</math> |
|- | |- | ||
|Since the left and right hand limit do not agree, the derivative does not exist at the point <math style="vertical-align: -2%;">x=1</math>.<br> | |Since the left and right hand limit do not agree, the derivative does not exist at the point <math style="vertical-align: -2%;">x=1</math>.<br> | ||
Line 65: | Line 79: | ||
| <math>f(1)\,=\,\sqrt{1^2+3}\,=\,2\,=\,\frac{\,\,1^2}{4}+C,</math> | | <math>f(1)\,=\,\sqrt{1^2+3}\,=\,2\,=\,\frac{\,\,1^2}{4}+C,</math> | ||
|- | |- | ||
− | |so <math style="vertical-align: -24%;">C= | + | |so <math style="vertical-align: -24%;">C=7/4</math> makes the function continuous. |
|- | |- | ||
− | |(b) We again consider the derivative from each side of 1. For <math style="vertical-align: -2%;">x | + | |(b) We again consider the derivative from each side of 1. For <math style="vertical-align: -2%;">x>1</math>, |
|- | |- | ||
| <math>f'(x)=\frac{1}{2\sqrt{x^2+3}}\cdot 2x\,=\,\frac{x}{\sqrt{x^2+3}},</math> | | <math>f'(x)=\frac{1}{2\sqrt{x^2+3}}\cdot 2x\,=\,\frac{x}{\sqrt{x^2+3}},</math> | ||
|- | |- | ||
− | |while for <math style="vertical-align: -3%;">x | + | |while for <math style="vertical-align: -3%;">x<1</math>, |
|- | |- | ||
| <math>f'(x)\,=\,\frac{x}{2}.</math> | | <math>f'(x)\,=\,\frac{x}{2}.</math> | ||
Line 77: | Line 91: | ||
|Thus | |Thus | ||
|- | |- | ||
− | | <math>\lim_{x\rightarrow 1^ | + | | <math>\lim_{x\rightarrow 1^+}f'(x)\,=\,\frac{1}{\sqrt{1^2+3}}\,=\,\frac{1}{2},</math> |
|- | |- | ||
|and | |and | ||
|- | |- | ||
− | | <math>\lim_{x\rightarrow 1^ | + | | <math>\lim_{x\rightarrow 1^-}f'(x)\,=\,\frac{1}{2}.</math> |
|- | |- | ||
− | |Since the left and right hand limit do agree, the limit (which <u>''is''</u> the derivative) does exist at the point <math style="vertical-align: -2%;">x=1</math> | + | |Since the left and right hand limit do agree, the limit (which <u>''is''</u> the derivative) does exist at the point <math style="vertical-align: -2%;">x=1</math>, and <math style="vertical-align: -15%;">g(x)</math><br> is differentiable at the required point. |
|} | |} | ||
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 09:33, 12 April 2015
3. (Version I) Consider the following function:
(a) | Find a value of which makes continuous at |
(b) | With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer. |
3. (Version II) Consider the following function:
(a) | Find a value of which makes continuous at |
(b) | With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer. |
Foundations: |
---|
A function is continuous at a point if |
This can be viewed as saying the left and right hand limits exist, and are equal to the value of at . For problems like these, where we are trying to find a particular value for , we can just set the two descriptions of the function to be equal at the value where the definition of changes. |
When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means acknowledging that the derivative is a limit, and for a limit to exist it must agree from the left and the right. This means we must show the derivatives agree for both the descriptions of at the transition point. |
Solution:
Version I: |
---|
(a) For continuity, we evaluate both rules for the function at the transition point , set the results equal, and then solve for . Since we want |
we can set , and the function will be continuous (the left and right hand limits agree, and equal the function's value at the point ).
(b) To test differentiability, we note that for , |
while for , |
Thus |
but |
Since the left and right hand limit do not agree, the derivative does not exist at the point . |
Version II: |
---|
(a) Like Version I, we begin by setting the two functions equal. We want |
so makes the function continuous. |
(b) We again consider the derivative from each side of 1. For , |
while for , |
Thus |
and |
Since the left and right hand limit do agree, the limit (which is the derivative) does exist at the point , and is differentiable at the required point. |