Difference between revisions of "022 Exam 1 Sample A, Problem 8"

From Math Wiki
Jump to navigation Jump to search
m
Line 1: Line 1:
<span style="font-size:135%">8. Find the derivative of the function <math style="vertical-align: -43%">f(x)=\frac{(3x-1)^{2}}{x^{3}-7}</math>.
+
<span style="font-size:135%"><font face=Times Roman>8. Find the derivative of the function <math style="vertical-align: -43%">f(x)=\frac{(3x-1)^{2}}{x^{3}-7}</math>.
You do not need to simplify your answer.
+
You do not need to simplify your answer.</font face=Times Roman>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 18: Line 18:
 
|<br>
 
|<br>
 
|}
 
|}
 
 
&nbsp;'''Solution:'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1: &nbsp;
+
!Solution: &nbsp;
 +
|-
 +
|Note that we need to use chain rule to find the derivative of <math style="vertical-align: -25%;">\left(3x-1\right)^2</math>.  Then we find
 
|-
 
|-
 +
|<table>
 +
  <tr style="vertical-align: middle">
 +
    <td> &nbsp;&nbsp;&nbsp;&nbsp; <math style="vertical-align: -70%">f'(x)</math>&nbsp; </td>
 +
    <td><math>=\,\,\frac{\left[\left(3x-1\right)^{2}\right]'\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot(x^{3}-7)'}{(x^{3}-7)^{2}}</math></td>
 +
  </tr>
 +
  <tr>
 +
    <td></td>
 +
    <td><math>=\frac{\left[2\left(3x-1\right)\cdot3\right]\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot3x^{2}}{(x^{3}-7)^{2}}.</math></td>
 +
</table>
 
|}
 
|}
 +
  
 
[[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_1_Sample_A|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:59, 2 April 2015

8. Find the derivative of the function . You do not need to simplify your answer.

Foundations:  
This problem involves some more advanced rules of differentiation. In particular, it requires
The Chain Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions, then

     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f\circ g)'(x) = f'(g(x))\cdot g'(x).}

The Quotient Rule: If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are differentiable functions and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) \neq 0}  , then

     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. }

Solution:  
Note that we need to use chain rule to find the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(3x-1\right)^2} . Then we find
     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)}   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\,\,\frac{\left[\left(3x-1\right)^{2}\right]'\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot(x^{3}-7)'}{(x^{3}-7)^{2}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{\left[2\left(3x-1\right)\cdot3\right]\cdot(x^{3}-7) \,\,-\,\, \left(3x-1\right)^{2}\cdot3x^{2}}{(x^{3}-7)^{2}}.}


Return to Sample Exam