Difference between revisions of "022 Exam 1 Sample A, Problem 2"
(Created page with "<span style="font-size:135%"><font face=Times Roman>2. Use implicit differentiation to find <math style="vertical-align: -16%">dy/dx</math> at the point <math style="vertical-...") |
m |
||
| Line 5: | Line 5: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |When we use implicit differentiation, we combine the chain rule with the fact that <math style="vertical-align: -18%">y</math> is a function of <math style="vertical-align: 0%">x</math>, and could really be written as <math style="vertical-align: -25%">y(x).</math> Because of this, the derivative | + | |When we use implicit differentiation, we combine the chain rule with the fact that <math style="vertical-align: -18%">y</math> is a function of <math style="vertical-align: 0%">x</math>, and could really be written as <math style="vertical-align: -25%">y(x).</math> Because of this, the derivative of <math style="vertical-align:-21%">y^3</math> with respect to <math style="vertical-align: 0%">x</math> requires the chain rule, so |
|- | |- | ||
| <math>\frac{d}{dx}\left(y^{3}\right)=3y^{2}\cdot\frac{dy}{dt}.</math> | | <math>\frac{d}{dx}\left(y^{3}\right)=3y^{2}\cdot\frac{dy}{dt}.</math> | ||
Revision as of 21:46, 31 March 2015
2. Use implicit differentiation to find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy/dx} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,0)} on the curve defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{3}-y^{3}-y=x} .
| Foundations: |
|---|
| When we use implicit differentiation, we combine the chain rule with the fact that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} is a function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , and could really be written as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(x).} Because of this, the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y^3} with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} requires the chain rule, so |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\left(y^{3}\right)=3y^{2}\cdot\frac{dy}{dt}.} |
Solution:
| Step 1: |
|---|
| First, we differentiate each term separately with respect to x to find that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{3}-y^{3}-y=x} differentiates implicitly to |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^{2}-3y^{2}\cdot\frac{dy}{dx}-\frac{dy}{dx}=1} . |
| Step 2: |
|---|
| Since they don't ask for a general expression of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy/dx} , but rather a particular value at a particular point, we can plug in the values Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0} to find |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3(1)^{2}-3(0)^{2}\cdot\frac{dy}{dx}-\frac{dy}{dx}=1,} |
| which is equivalent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3-\frac{dy}{dx}=1} . This solves to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy/dx=2.} |