Difference between revisions of "Math 22 Lagrange Multipliers"
Jump to navigation
Jump to search
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''") |
|||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | ==Method of Lagrange Multipliers== | ||
+ | If <math>f(x,y)</math> has a maximum or minimum subject to the constraint <math>g(x,y)=0</math>, then it will occur at one of the critical numbers of the function defined by | ||
+ | <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)</math>. | ||
+ | |||
+ | In this section, we need to set up the system of equations: | ||
+ | |||
+ | <math>F_x(x,y,\lambda)=0</math> | ||
+ | <math>F_y(x,y,\lambda)=0</math> | ||
+ | <math>F_{\lambda}(x,y,\lambda)=0</math> | ||
+ | '''Example:''' Set up the Lagrange Multipliers: | ||
+ | '''1)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+y-14=0</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+y-14)=xy-\lambda x -\lambda y+14\lambda</math> | ||
+ | |- | ||
+ | |<math>F_x(x,y,\lambda)=y-\lambda</math> | ||
+ | |- | ||
+ | |<math>F_y(x,y,\lambda)=x-\lambda</math> | ||
+ | |- | ||
+ | |<math>F_{\lambda}(x,y,\lambda)=-x-y+14</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+3y-6=0</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+3y-6)=xy-\lambda x -3\lambda y+6\lambda</math> | ||
+ | |- | ||
+ | |<math>F_x(x,y,\lambda)=y-\lambda</math> | ||
+ | |- | ||
+ | |<math>F_y(x,y,\lambda)=x-3\lambda</math> | ||
+ | |- | ||
+ | |<math>F_{\lambda}(x,y,\lambda)=-x-3y+6</math> | ||
+ | |} | ||
Latest revision as of 08:57, 18 August 2020
Method of Lagrange Multipliers
If has a maximum or minimum subject to the constraint , then it will occur at one of the critical numbers of the function defined by . In this section, we need to set up the system of equations:
Example: Set up the Lagrange Multipliers:
1) Maximum: and Constraint
Solution: |
---|
So, |
2) Maximum: and Constraint
Solution: |
---|
So, |
This page were made by Tri Phan