Difference between revisions of "Math 22 Lagrange Multipliers"
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''") |
|||
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | ==Method of Lagrange Multipliers== | ||
| + | If <math>f(x,y)</math> has a maximum or minimum subject to the constraint <math>g(x,y)=0</math>, then it will occur at one of the critical numbers of the function defined by | ||
| + | <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)</math>. | ||
| + | |||
| + | In this section, we need to set up the system of equations: | ||
| + | |||
| + | <math>F_x(x,y,\lambda)=0</math> | ||
| + | <math>F_y(x,y,\lambda)=0</math> | ||
| + | <math>F_{\lambda}(x,y,\lambda)=0</math> | ||
| + | '''Example:''' Set up the Lagrange Multipliers: | ||
| + | '''1)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+y-14=0</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+y-14)=xy-\lambda x -\lambda y+14\lambda</math> | ||
| + | |- | ||
| + | |<math>F_x(x,y,\lambda)=y-\lambda</math> | ||
| + | |- | ||
| + | |<math>F_y(x,y,\lambda)=x-\lambda</math> | ||
| + | |- | ||
| + | |<math>F_{\lambda}(x,y,\lambda)=-x-y+14</math> | ||
| + | |} | ||
| + | |||
| + | '''2)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+3y-6=0</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |So, <math>F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+3y-6)=xy-\lambda x -3\lambda y+6\lambda</math> | ||
| + | |- | ||
| + | |<math>F_x(x,y,\lambda)=y-\lambda</math> | ||
| + | |- | ||
| + | |<math>F_y(x,y,\lambda)=x-3\lambda</math> | ||
| + | |- | ||
| + | |<math>F_{\lambda}(x,y,\lambda)=-x-3y+6</math> | ||
| + | |} | ||
Latest revision as of 08:57, 18 August 2020
Method of Lagrange Multipliers
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)}
has a maximum or minimum subject to the constraint Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x,y)=0}
, then it will occur at one of the critical numbers of the function defined by
.
In this section, we need to set up the system of equations:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_x(x,y,\lambda)=0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_y(x,y,\lambda)=0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{\lambda}(x,y,\lambda)=0}
Example: Set up the Lagrange Multipliers:
1) Maximum: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=xy} and Constraint Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+y-14=0}
| Solution: |
|---|
| So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+y-14)=xy-\lambda x -\lambda y+14\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_x(x,y,\lambda)=y-\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_y(x,y,\lambda)=x-\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{\lambda}(x,y,\lambda)=-x-y+14} |
2) Maximum: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=xy} and Constraint Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+3y-6=0}
| Solution: |
|---|
| So, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,y,\lambda)=f(x,y)-\lambda g(x,y)=xy-\lambda (x+3y-6)=xy-\lambda x -3\lambda y+6\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_x(x,y,\lambda)=y-\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_y(x,y,\lambda)=x-3\lambda} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{\lambda}(x,y,\lambda)=-x-3y+6} |
This page were made by Tri Phan