Difference between revisions of "Math 22 Lagrange Multipliers"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
<math>F_y(x,y,\lambda)=0</math> | <math>F_y(x,y,\lambda)=0</math> | ||
<math>F_{\lambda}(x,y,\lambda)=0</math> | <math>F_{\lambda}(x,y,\lambda)=0</math> | ||
− | + | ||
− | + | '''Example:''' Set up the Lagrange Multipliers: | |
+ | |||
+ | '''1)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+y-14=0</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\frac{\partial z}{\partial x}=4x^2-4y</math> | ||
+ | |- | ||
+ | |<math>\frac{\partial z}{\partial y}=-4x</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' Maximum: <math>f(x,y)=xy</math> and Constraint <math>x+3y-6=0</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\frac{\partial z}{\partial x}=2xy^3</math> | ||
+ | |- | ||
+ | |<math>\frac{\partial z}{\partial y}=3x^2y^2</math> | ||
+ | |} | ||
Revision as of 08:50, 18 August 2020
Method of Lagrange Multipliers
If has a maximum or minimum subject to the constraint , then it will occur at one of the critical numbers of the function defined by . In this section, we need to set up the system of equations:
Example: Set up the Lagrange Multipliers:
1) Maximum: and Constraint
Solution: |
---|
2) Maximum: and Constraint
Solution: |
---|
This page were made by Tri Phan