Difference between revisions of "Math 22 Extrema of Functions of Two Variables"

From Math Wiki
Jump to navigation Jump to search
(Created page with " '''Return to Topics Page''' '''This page were made by Tri Phan'''")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==Relative Extrema of a Function of Two Variables==
 +
  Let <math>f</math> be a function defined on a region containing <math>(x_0,y_0)</math>. The function <math>f</math> has a relative maximum at <math>(x_0,y_0)</math> when there is a circular region  centered at <math>(x_0,y_0)</math> such that
 +
 
 +
  <math>f(x,y)\le f(x_0,y_0)</math>
 +
 
 +
  for all <math>(x,y)</math> in <math>R</math>.
  
 +
  The function <math>f</math> has a relative minimum at <math>(x_0,y_0)</math> when there is a circular region  centered at <math>(x_0,y_0)</math> such that
 +
 
 +
  <math>f(x,y)\ge  f(x_0,y_0)</math>
 +
 
 +
  for all <math>(x,y)</math> in <math>R</math>.
 +
==First-Partials Test for Relative Extrema==
 +
  If <math>f</math> has a relative extremum at  on an open region <math>R</math> in the xy-plane, and the first partial derivatives of <math>f</math> exist in <math>R</math>, then
 +
 
 +
  <math>f_x(x_0,y_0)=0</math> and <math>f_y(x_0,y_0)=0</math>
  
 +
'''Example:''' Find the relative critical point of of:
  
 +
'''1)''' <math>f(x,y)=2x^2+y^2+8x-6y+20</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Consider: <math>f_x(x,y)=4x+8=0</math>, so <math>x=-2</math>
 +
|-
 +
|and: <math>f_y(x,y)=2y-6=0</math>, so <math>y=3</math>
 +
|-
 +
|Therefore, there is a critical point at <math>(-2,3)</math>
 +
|}
  
 +
==The Second-Partials Test for Relative Extrema==
 +
  Let <math>f</math> have continuous second partial derivatives on an open region containing <math>(a,b)</math> for which <math>f_x(a,b)=0</math> and <math>f_y(a,b)=0</math>
 +
  Then, consider <math>d=f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(a,b)]^2</math>
 +
 
 +
  Then:
 +
  1. If <math>d>0</math> and <math>f_{xx}(a,b)>0</math>, then <math>f</math> has a relative minimum at <math>(a,b)</math>.
 +
  2. If <math>d>0</math> and <math>f_{xx}(a,b)<0</math>, then <math>f</math> has a relative maximum at <math>(a,b)</math>.
 +
  3. If <math>d<0</math>, then <math>(a,b,f(a,b))</math> is a saddle point.
 +
  4. If <math>d=0</math>, no conclusion.
  
 +
'''Example:''' Find the relative extrema (maximum or minimum):
  
 
+
'''1)''' <math>f(x,y)=2x^2+y^2+8x-6y+20</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Consider: <math>f_x(x,y)=4x+8=0</math>, so <math>x=-2</math>
 +
|-
 +
|and: <math>f_y(x,y)=2y-6=0</math>, so <math>y=3</math>
 +
|-
 +
|Therefore, there is a critical point at <math>(-2,3)</math>
 +
|-
 +
|Now: <math>f_{xx}f(x,y)=4</math>
 +
|-
 +
|<math>f_{yy}f(x,y)=2</math>
 +
|-
 +
|and <math>f_{xy}f(x,y)=0</math>
 +
|-
 +
|Then, <math>d=f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(a,b)]^2=(4)(2)-0^2=8</math>
 +
|-
 +
|Since, <math>d>0</math> and <math>f_{xx}f(x,y)=4>0</math>, then by the second-partial test, <math>f</math> has a relative minumum at <math>(-2,3)</math>
 +
|}
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 08:32, 18 August 2020

Relative Extrema of a Function of Two Variables

 Let  be a function defined on a region containing . The function  has a relative maximum at  when there is a circular region  centered at  such that
 
 
 
 for all  in .
 The function  has a relative minimum at  when there is a circular region  centered at  such that
 
 
 
 for all  in .

First-Partials Test for Relative Extrema

 If  has a relative extremum at  on an open region  in the xy-plane, and the first partial derivatives of  exist in , then
 
  and 

Example: Find the relative critical point of of:

1)

Solution:  
Consider: , so
and: , so
Therefore, there is a critical point at

The Second-Partials Test for Relative Extrema

 Let  have continuous second partial derivatives on an open region containing  for which  and 
 Then, consider 
 
 Then:
 1. If  and , then  has a relative minimum at .
 2. If  and , then  has a relative maximum at .
 3. If , then  is a saddle point.
 4. If , no conclusion.

Example: Find the relative extrema (maximum or minimum):

1)

Solution:  
Consider: , so
and: , so
Therefore, there is a critical point at
Now:
and
Then,
Since, and , then by the second-partial test, has a relative minumum at

Return to Topics Page

This page were made by Tri Phan