Difference between revisions of "Math 22 Extrema of Functions of Two Variables"

From Math Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
   Let <math>f</math> have continuous second partial derivatives on an open region containing <math>(a,b)</math> for which <math>f_x(a,b)=0</math> and <math>f_y(a,b)=0</math>
 
   Let <math>f</math> have continuous second partial derivatives on an open region containing <math>(a,b)</math> for which <math>f_x(a,b)=0</math> and <math>f_y(a,b)=0</math>
 
   Then, consider <math>d=f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(a,b)]^2</math>
 
   Then, consider <math>d=f_{xx}(a,b)f_{yy}(a,b)-[f_{xy}(a,b)]^2</math>
 +
 
 +
  Then:
 +
  1. If <math>d>0</math> and <math>f_{xx}(a,b)>0</math>, then <math>f</math> has a relative minimum at <math>(a,b)</math>.
 +
  2. If <math>d>0</math> and <math>f_{xx}(a,b)<0</math>, then <math>f</math> has a relative maximum at <math>(a,b)</math>.
 +
  3. If <math>d<0</math>, then <math>(a,b,f(a,b))</math> is a saddle point.
 +
  4. If <math>d=0</math>, no conclusion.
 +
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Revision as of 08:25, 18 August 2020

Relative Extrema of a Function of Two Variables

 Let  be a function defined on a region containing . The function  has a relative maximum at  when there is a circular region  centered at  such that
 
 
 
 for all  in .
 The function  has a relative minimum at  when there is a circular region  centered at  such that
 
 
 
 for all  in .

First-Partials Test for Relative Extrema

 If  has a relative extremum at  on an open region  in the xy-plane, and the first partial derivatives of  exist in , then
 
  and 

Example: Find relative extrema of:

1)

Solution:  
Consider: , so
and: , so
Therefore, there is a relative extrema at

The Second-Partials Test for Relative Extrema

 Let  have continuous second partial derivatives on an open region containing  for which  and 
 Then, consider 
 
 Then:
 1. If  and , then  has a relative minimum at .
 2. If  and , then  has a relative maximum at .
 3. If , then  is a saddle point.
 4. If , no conclusion.


Return to Topics Page

This page were made by Tri Phan