Difference between revisions of "Math 22 Partial Derivatives"

From Math Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
    
 
    
 
   <math>\frac{\partial z}{\partial y}=\lim_{\Delta y\to 0}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}</math>
 
   <math>\frac{\partial z}{\partial y}=\lim_{\Delta y\to 0}\frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}</math>
 +
 
 +
  We can denote <math>\frac{\partial z}{\partial x}</math> as <math>f_x(x,y)</math> and <math>\frac{\partial z}{\partial y}</math> as <math>f_y(x,y)</math>
 +
'''Example:''' Find <math>\frac{\partial z}{\partial x}</math> and <math>\frac{\partial z}{\partial y}</math> of:
  
'''Example:''' Find <math>\frac{\partial z}{\partial x}</math> and <math>\frac{\partial z}{\partial y}</math> of
+
'''1)''' <math>z=f(x,y)=2x^2-4xy</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\frac{\partial z}{\partial x}=4x^2-4y</math>
 +
|-
 +
|<math>\frac{\partial z}{\partial y}=-4x</math>
 +
|}
  
 +
'''1)''' <math>z=f(x,y)=x^2y^3</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\frac{\partial z}{\partial x}=4x^2-4y</math>
 +
|-
 +
|<math>\frac{\partial z}{\partial y}=-4x</math>
 +
|}
  
  

Revision as of 07:35, 18 August 2020

Partial Derivatives of a Function of Two Variables

 If , then the first partial derivatives of  with respect to  and  are the functions  and , defined as shown.
 
 
 
 
 
 We can denote  as  and  as 

Example: Find and of:

1)

Solution:  

1)

Solution:  



Return to Topics Page

This page were made by Tri Phan