Difference between revisions of "Math 22 The Three-Dimensional Coordinate System"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 61: | Line 61: | ||
|So, <math>(x-1)^2+(y-2)^2+(z-0)^2=5^2</math> | |So, <math>(x-1)^2+(y-2)^2+(z-0)^2=5^2</math> | ||
|- | |- | ||
− | |Therefore, <math>(x-1)^2+(y-2)^2+z^2=25 | + | |Therefore, <math>(x-1)^2+(y-2)^2+z^2=25</math> |
|} | |} | ||
Line 72: | Line 72: | ||
|So, <math>(x-(-1))^2+(y-2)^2+(z-4)^2=2^2</math> | |So, <math>(x-(-1))^2+(y-2)^2+(z-4)^2=2^2</math> | ||
|- | |- | ||
− | |Therefore, <math>(x+1)^2+(y-2)^2+(z-4)^2=4 | + | |Therefore, <math>(x+1)^2+(y-2)^2+(z-4)^2=4</math> |
|} | |} | ||
+ | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Latest revision as of 06:43, 18 August 2020
The Three-Dimensional Coordinate System
The Distance and Midpoint Formulas
The distance between the points and is
Exercises 1 Find the distance between two points
1) and
Solution: |
---|
2) and
Solution: |
---|
Midpoint Formula in Space
The midpoint of the line segment joining the points and is
Exercises 2 Find the midpoint of two points below:
1) and
Solution: |
---|
2) and
Solution: |
---|
Standard Equation of a Sphere
The standard equation of a sphere with center at and radius is:
Exercises 3 Find the equation of the sphere that has:
1) Center: and radius:
Solution: |
---|
So, |
Therefore, |
2) Center: and radius:
Solution: |
---|
So, |
Therefore, |
This page were made by Tri Phan