Difference between revisions of "Math 22 The Three-Dimensional Coordinate System"

From Math Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
    
 
    
 
   <math>d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}</math>
 
   <math>d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}</math>
 +
 +
'''Exercises 1''' Find the distance between two points
 +
 +
'''1)''' <math>(4,2,3) and <math>(1,2,0)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}=\sqrt{(1-4)^2+(2-2)^2+(0-3)^2}=\sqrt{18}</math>
 +
|-
 +
|}
 +
 +
'''2)''' <math>(1,2,4) and <math>(2,5,1)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>d=\sqrt{(2-1)^2+(5-2)^2+(1-4)^2}=\sqrt{19}</math>
 +
|-
 +
|}
 +
 +
==Midpoint Formula in Space==
 +
  
  

Revision as of 06:31, 18 August 2020

The Three-Dimensional Coordinate System

3d spaces.png

The Distance and Midpoint Formulas

 The distance  between the points  and  is
 
 

Exercises 1 Find the distance between two points

1)

Solution:  

2)

Solution:  

Midpoint Formula in Space

Return to Topics Page

This page were made by Tri Phan