Difference between revisions of "Math 22 Integration by Parts and Present Value"
| Line 26: | Line 26: | ||
|and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | |and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | ||
|- | |- | ||
| − | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} </math> | + | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C </math> |
|} | |} | ||
| + | '''3)''' <math>\int x^2e^{-x}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=x^2</math>, <math>du=2xdx</math> | ||
| + | |- | ||
| + | |and <math>dv=e^{-x}dx</math> and <math>v=-e^{-x}</math> | ||
| + | |- | ||
| + | |Then, by integration by parts: <math>\int x^2e^{-x}dx=x^2(-e^{-x}) -\int-e^{-x}2x dx=-x^2e^{-x}+\int 2xe^{-x}dx </math> | ||
| + | |- | ||
| + | |Now, we apply integration by parts the second time for <math>\int 2xe^{-x}dx</math> | ||
| + | |- | ||
| + | |Let <math>u=2x</math>, <math>du=2dx</math> | ||
| + | |- | ||
| + | |and <math>dv=e^{-x}dx</math> and <math>v=-e^{-x}</math> | ||
| + | |- | ||
| + | |So <math>\int 2xe^{-x}dx=2x(-e^{-x})-\int -e^{-x} 2dx=-2xe^{-x}-e^{-x}+C</math> | ||
| + | |- | ||
| + | |Therefore, <math>\int x^2e^{-x}dx=-x^2e^{-x}-2xe^{-x}-e^{-x}+C</math> | ||
| + | |} | ||
| + | '''4)''' <math>\int xe^{3x}dx</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |Let <math>u=x</math>, <math>du=dx</math> | ||
| + | |- | ||
| + | |and <math>dv=e^{3x}dx</math> and <math>v=\frac{1}{3}e^{3x}</math> | ||
| + | |- | ||
| + | |Then, by integration by parts: <math>\int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C </math> | ||
| + | |} | ||
Revision as of 06:10, 18 August 2020
Integration by Parts
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v}
be differentiable functions of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}
.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int u dv=uv-\int v du}
Exercises Use integration by parts to evaluation:
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \ln x dx}
| Solution: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle >du=\frac{1}{x}dx} |
| and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=x} |
| Then, by integration by parts: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \ln x dx=x\ln x-\int x\frac{1}{x}dx=x\ln x-\int dx=x\ln x -x +C} |
2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^{3x}dx}
| Solution: |
|---|
| Let , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} |
| and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{3x}dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{1}{3}e^{3x}} |
| Then, by integration by parts: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C } |
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{-x}dx}
| Solution: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^2} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2xdx} |
| and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-x}dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-x}} |
| Then, by integration by parts: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{-x}dx=x^2(-e^{-x}) -\int-e^{-x}2x dx=-x^2e^{-x}+\int 2xe^{-x}dx } |
| Now, we apply integration by parts the second time for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int 2xe^{-x}dx} |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx} |
| and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-x}dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-x}} |
| So Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int 2xe^{-x}dx=2x(-e^{-x})-\int -e^{-x} 2dx=-2xe^{-x}-e^{-x}+C} |
| Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2e^{-x}dx=-x^2e^{-x}-2xe^{-x}-e^{-x}+C} |
4) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^{3x}dx}
| Solution: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=dx} |
| and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{3x}dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{1}{3}e^{3x}} |
| Then, by integration by parts: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int xe^{3x}dx=x\frac{1}{3}e^{3x} -\int\frac{1}{3}e^{3x} dx=x\frac{1}{3}e^{3x}-\frac{1}{9}e^{3x} +C } |
This page were made by Tri Phan