Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 38: Line 38:
 
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math>
 
|Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math>
 
|}
 
|}
 +
 +
==Using the Log Rule==
 +
  Let <math>u</math> be a differentiable function of <math>x</math>, then
 +
  <math>\int\frac{1}{x}=\ln|x|+C</math>
 +
 
 +
  <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C</math>
 +
 +
'''Exercises 2''' Find the indefinite integral
 +
 +
'''1)''' <math>\int \frac{3}{x}dx</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\int \frac{3}{x}dx=3\int \frac{1}{x}=3\ln |x| +C</math>
 +
|}
 +
 +
'''2)''' <math>\int \frac{3x}{x^2}dx</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Let <math>u=x^2</math>, so <math>du=2xdx</math>, so <math>dx=\frac{du}{2x}</math>
 +
|-
 +
|Consider <math>\int \frac{3x}{x^2}dx=\int\frac{3x}{u}\frac{du}{2x}=\int\frac{3}{2}\frac{1}{u}du=\frac{3}{2}\int\frac{1}{u}du=\frac{3}{2}\ln|u|+C=\frac{3}{2}\ln |x^2|+C</math>
 +
|}
 +
 +
'''3)''' <math>\int\frac{3}{3x+5}dx</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math>
 +
|-
 +
|Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=\ln |3x+5|+C</math>
 +
|}
 +
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 08:08, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider

Using the Log Rule

 Let  be a differentiable function of , then
 
 
 

Exercises 2 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  
Let , so , so
Consider


Return to Topics Page

This page were made by Tri Phan