Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 63: | Line 63: | ||
|} | |} | ||
− | '''3)''' <math>\int | + | '''3)''' <math>\int\frac{3}{3x+5}dx</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | |<math> | + | |Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | |Consider <math>\int | + | |Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=}\ln |3x+5|+C</math> |
|} | |} | ||
Revision as of 08:07, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
4)
Solution: |
---|
Let , so , so |
Consider |
Using the Log Rule
Let be a differentiable function of , then
Exercises 2 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
Let , so , so |
Consider Failed to parse (syntax error): {\displaystyle \int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=}\ln |3x+5|+C} |
This page were made by Tri Phan