Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
| Line 41: | Line 41: | ||
==Using the Log Rule== | ==Using the Log Rule== | ||
Let <math>u</math> be a differentiable function of <math>x</math>, then | Let <math>u</math> be a differentiable function of <math>x</math>, then | ||
| − | <math>\int\frac{1}{x}=\ln | + | <math>\int\frac{1}{x}=\ln|x|+C</math> |
| − | <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln | + | <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C</math> |
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' | ||
Revision as of 07:43, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
| Solution: |
|---|
2)
| Solution: |
|---|
| Let , so , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{du}{3}} |
| Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int 3e^{3x}dx=\int 3e^u \frac{du}{3}=\int e^u du=e^u+C=e^{3x}+C} |
3) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int (3e^x-6x)dx}
| Solution: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int (3e^x-6x)dx=\int (3e^x)dx -\int 6xdx=3e^x-3x^2+C} |
4) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{2x-5}dx}
| Solution: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x-5} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx=\frac{du}{2}} |
| Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C} |
Using the Log Rule
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u}
be a differentiable function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}
, then
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\frac{1}{x}=\ln|x|+C}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln|u|+C}
This page were made by Tri Phan