Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
<math>\int e^u \frac{du}{dx}dx=\int e^u du=e^u+C</math> | <math>\int e^u \frac{du}{dx}dx=\int e^u du=e^u+C</math> | ||
+ | |||
+ | '''Exercises 1''' Find the indefinite integral | ||
+ | |||
+ | '''1)''' <math>\int 3e^xdx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int 3e^xdx=3\int e^x=3e^x +C</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>\int 3e^{3x}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=3x</math>, so <math>du=3dx</math>, so <math>dx=\frac{du}{3}</math> | ||
+ | |- | ||
+ | |Consider <math>\int 3e^{3x}dx=\int 3e^u \frac{du}{3}=\int e^u du=e^u+C=e^{3x}+C</math> | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math>\int (3e^x-6x)dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |<math>\int (3e^x-6x)dx=\int (3e^x)dx -\int 6xdx=3e^x-3x^2+C</math> | ||
+ | |} | ||
+ | |||
+ | '''1)''' <math>\int e^{2x-5}dx</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Let <math>u=2x-5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{2}</math> | ||
+ | |- | ||
+ | |Consider <math>\int e^{2x-5}dx=\int e^u \frac{du}{2}=\frac{1}{2}\int e^u du=\frac{1}{2}e^u +C=\frac{1}{2}e^{2x-5}+C</math> | ||
+ | |} | ||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 07:39, 15 August 2020
Integrals of Exponential Functions
Let be a differentiable function of , then
Exercises 1 Find the indefinite integral
1)
Solution: |
---|
2)
Solution: |
---|
Let , so , so |
Consider |
3)
Solution: |
---|
1)
Solution: |
---|
Let , so , so |
Consider |
This page were made by Tri Phan