Difference between revisions of "Math 22 Logarithmic Functions"

From Math Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Logarithm Function==
 
==Logarithm Function==
   The logarithm <math>log_a x</math> is defined as  
+
   The logarithm <math>\log_a x</math> is defined as  
   <math>log_a x=b</math> if and only if <math>a^b=x</math>
+
   <math>\log_a x=b</math> if and only if <math>a^b=x</math>
  
 
==Definition of the Natural Logarithmic Function==
 
==Definition of the Natural Logarithmic Function==
   The natural logarithmic function, denoted by <math>ln x</math>, is defined as
+
   The natural logarithmic function, denoted by <math>\ln x</math>, is defined as
   <math>ln x=b</math> if and only if <math>e^b=x</math>
+
   <math>\ln x=b</math> if and only if <math>e^b=x</math>
  
 
==Properties of the Natural Logarithmic Function==
 
==Properties of the Natural Logarithmic Function==
   Let <math>g(x)=ln x </math>
+
   Let <math>g(x)=\ln x </math>
 
   1. The domain of <math>g(x)</math> is <math>(0,\infty)</math> and the range of <math>g(x)</math> is <math>(-\infty,\infty)</math>
 
   1. The domain of <math>g(x)</math> is <math>(0,\infty)</math> and the range of <math>g(x)</math> is <math>(-\infty,\infty)</math>
 
   2. The x-intercept of the graph of <math>g(x)</math> is <math>(1,0)</math>
 
   2. The x-intercept of the graph of <math>g(x)</math> is <math>(1,0)</math>
 
   3. The function <math>g(x)</math> is continuous, increasing, and one-to-one.
 
   3. The function <math>g(x)</math> is continuous, increasing, and one-to-one.
 
   4. <math>\lim_{x\to 0^+} g(x)=-\infty</math> and <math>\lim_{x\to\infty} g(x)=\infty</math>
 
   4. <math>\lim_{x\to 0^+} g(x)=-\infty</math> and <math>\lim_{x\to\infty} g(x)=\infty</math>
 +
==Inverse Properties of Logarithms and Exponents==
 +
  1.<math>\ln e^{\sqrt{2}}</math>
 +
 
 +
  2.<math>e^{\ln x}=x</math>
 +
 
 +
  3.<math>\ln{xy}=\ln{x}+\ln{y}</math>
 +
 
 +
  4.<math>\ln{\frac{x}{y}}=\ln x - \ln y</math>
 +
 
 +
  5.<math>\ln{x^n}=n\ln x</math>
  
  
 +
 +
'''Exercises 1''' Use the properties of logarithms to rewrite the expression as the logarithm of a single quantity
 +
 +
'''a)''' <math>\ln(x-2)-\ln(x+2)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\ln(x-2)-\ln(x+2)=\ln \frac{x-2}{x+2}</math>
 +
|}
 +
 +
'''b)''' <math>5\ln (x-6)+\frac{1}{2}\ln(5x+1)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>5\ln(x-6)+\frac{1}{2}\ln(5x+1)=\ln(x-6)^5+\ln[(5x+1)^{\frac{1}{2}}]=\ln [(x-6)^5\sqrt{5x+1}]</math>
 +
|}
 +
 +
'''c)''' <math>3\ln x+2\ln y -4\ln z</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\ln x^3 + \ln y^2 -\ln z^4=\ln\frac{x^3y^2}{z^4}</math>
 +
|}
 +
 +
'''d)''' <math>7\ln (5x+4)-\frac{3}{2}\ln (x-9)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>7\ln (5x+4)-\frac{3}{2}\ln (x-9)=\ln (5x+4)^7-\ln (x-9)^{\frac{3}{2}}=\ln\frac{(5x+4)^7}{(x-9)^{\frac{3}{2}}}</math>
 +
|}
 +
 +
'''Exercises 2''' Solve for x.
 +
 +
'''a)''' <math>\ln(2x)=5</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\ln(2x)=5</math>, so <math>e^5=2x</math>, hence <math>x=\frac{e^5}{2}</math>
 +
|}
 +
 +
'''b)''' <math>5\ln x=3</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>5\ln x=3</math>, so <math>ln {x^5}=3</math>, so <math>e^3=x^5</math>, hence <math>x=\sqrt[5]{e^3}</math>
 +
|}
  
  

Latest revision as of 08:44, 11 August 2020

Logarithm Function

 The logarithm  is defined as 
  if and only if 

Definition of the Natural Logarithmic Function

 The natural logarithmic function, denoted by , is defined as
  if and only if 

Properties of the Natural Logarithmic Function

 Let 
 1. The domain of  is  and the range of  is 
 2. The x-intercept of the graph of  is 
 3. The function  is continuous, increasing, and one-to-one.
 4.  and 

Inverse Properties of Logarithms and Exponents

 1.
 
 2.
 
 3.
 
 4.
 
 5.


Exercises 1 Use the properties of logarithms to rewrite the expression as the logarithm of a single quantity

a)

Solution:  

b)

Solution:  

c)

Solution:  

d)

Solution:  

Exercises 2 Solve for x.

a)

Solution:  
, so , hence

b)

Solution:  
, so , so , hence


Return to Topics Page

This page were made by Tri Phan