Difference between revisions of "Math 22 Logarithmic Functions"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
==Logarithm Function==
 
==Logarithm Function==
   The logarithm <math>log_a x</math> is defined as  
+
   The logarithm <math>\log_a x</math> is defined as  
   <math>log_a x=b</math> if and only if <math>a^b=x</math>
+
   <math>\log_a x=b</math> if and only if <math>a^b=x</math>
  
 
==Definition of the Natural Logarithmic Function==
 
==Definition of the Natural Logarithmic Function==
   The natural logarithmic function, denoted by <math>ln x</math>, is defined as
+
   The natural logarithmic function, denoted by <math>\ln x</math>, is defined as
   <math>ln x=b</math> if and only if <math>e^b=x</math>
+
   <math>\ln x=b</math> if and only if <math>e^b=x</math>
  
 
==Properties of the Natural Logarithmic Function==
 
==Properties of the Natural Logarithmic Function==
   Let <math>g(x)=ln x </math>
+
   Let <math>g(x)=\ln x </math>
 
   1. The domain of <math>g(x)</math> is <math>(0,\infty)</math> and the range of <math>g(x)</math> is <math>(-\infty,\infty)</math>
 
   1. The domain of <math>g(x)</math> is <math>(0,\infty)</math> and the range of <math>g(x)</math> is <math>(-\infty,\infty)</math>
 
   2. The x-intercept of the graph of <math>g(x)</math> is <math>(1,0)</math>
 
   2. The x-intercept of the graph of <math>g(x)</math> is <math>(1,0)</math>
 
   3. The function <math>g(x)</math> is continuous, increasing, and one-to-one.
 
   3. The function <math>g(x)</math> is continuous, increasing, and one-to-one.
 
   4. <math>\lim_{x\to 0^+} g(x)=-\infty</math> and <math>\lim_{x\to\infty} g(x)=\infty</math>
 
   4. <math>\lim_{x\to 0^+} g(x)=-\infty</math> and <math>\lim_{x\to\infty} g(x)=\infty</math>
 
+
==Inverse Properties of Logarithms and Exponents==
 
+
  1.<math>\ln e^{\sqrt{2}}</math>
 +
  2.<math>e^{\ln x}=x</math>
 +
 
  
  

Revision as of 07:58, 11 August 2020

Logarithm Function

 The logarithm  is defined as 
  if and only if 

Definition of the Natural Logarithmic Function

 The natural logarithmic function, denoted by , is defined as
  if and only if 

Properties of the Natural Logarithmic Function

 Let 
 1. The domain of  is  and the range of  is 
 2. The x-intercept of the graph of  is 
 3. The function  is continuous, increasing, and one-to-one.
 4.  and 

Inverse Properties of Logarithms and Exponents

 1.
 2.
 


Return to Topics Page

This page were made by Tri Phan