Difference between revisions of "Math 22 Logarithmic Functions"
Jump to navigation
Jump to search
| Line 2: | Line 2: | ||
The logarithm <math>log_a x</math> is defined as | The logarithm <math>log_a x</math> is defined as | ||
<math>log_a x=b</math> if and only if <math>a^b=x</math> | <math>log_a x=b</math> if and only if <math>a^b=x</math> | ||
| + | |||
| + | ==Definition of the Natural Logarithmic Function== | ||
| + | The natural logarithmic function, denoted by <math>ln x</math>, is defined as | ||
| + | <math>ln x=b</math> if and only if <math>e^b=x</math> | ||
| + | |||
| + | ==Properties of the Natural Logarithmic Function== | ||
| + | Let <math>g(x)=ln x </math> | ||
| + | 1. The domain of <math>g(x)</math> is <math>(0,\infty)</math> and the range of <math>g(x)</math> is <math>(-\infty,\infty)</math> | ||
| + | 2. The x-intercept of the graph of <math>g(x)</math> is <math>(1,0)</math> | ||
| + | 3. The function <math>g(x)</math> is continuous, increasing, and one-to-one. | ||
| + | 4. <math>\lim_{x\to 0^+} g(x)=-\infty</math> and <math>\lim_{x\to\infty} g(x)=\infty</math> | ||
| + | |||
| + | |||
| + | |||
| + | |||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' | ||
Revision as of 07:54, 11 August 2020
Logarithm Function
The logarithm is defined as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle log_a x=b}
if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^b=x}
Definition of the Natural Logarithmic Function
The natural logarithmic function, denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ln x}
, is defined as
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ln x=b}
if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^b=x}
Properties of the Natural Logarithmic Function
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=ln x }
1. The domain of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}
is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,\infty)}
and the range of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}
is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,\infty)}
2. The x-intercept of the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}
is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,0)}
3. The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}
is continuous, increasing, and one-to-one.
4. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to 0^+} g(x)=-\infty}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\to\infty} g(x)=\infty}
This page were made by Tri Phan