Difference between revisions of "Math 22 Derivatives of Exponential Functions"
Jump to navigation
Jump to search
(Created page with "==Derivative of the Natural Exponential Function== Let <math>u</math> be a differentiable function of <math>x</math>. Then, 1.<math>\frac{d}{dx}[e^x]=e^x</math> 2.<math>...") |
|||
| Line 4: | Line 4: | ||
2.<math>\frac{d}{dx}[e^u]=e^u\frac{du}{dx}</math> | 2.<math>\frac{d}{dx}[e^u]=e^u\frac{du}{dx}</math> | ||
| + | '''Exercises''' Differentiate each function: | ||
| + | |||
| + | '''a)''' <math>f(x)=e^{2x}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f'(x)=2e^{2x}</math> | ||
| + | |} | ||
| + | |||
| + | '''b)''' <math>f(x)=e^{3x^2}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f'(x)=6xe^{3x^2}</math> | ||
| + | |} | ||
| + | |||
| + | '''c)''' <math>f(x)=e^{-x^2}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f'(x)=-2xe^{2x}</math> | ||
| + | |} | ||
| + | |||
| + | '''d)''' <math>f(x)=4e^{-x}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f'(x)=-4e^{-x}</math> | ||
| + | |} | ||
| + | |||
| + | '''e)''' <math>f(x)=\frac{e^x-e^{-x}}{2}</math> | ||
| + | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Solution: | ||
| + | |- | ||
| + | |<math>f(x)=\frac{e^x-e^{-x}}{2}=\frac{e^x}{2}-\frac{e^{-x}}{2}=\frac{1}{2}e^x-\frac{1}{2}e^{-x}</math> | ||
| + | |- | ||
| + | |<math>f'(x)=\frac{1}{2}e^x-\frac{1}{2}(-1)e^{-x}</math> | ||
| + | |} | ||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' | ||
Revision as of 07:39, 11 August 2020
Derivative of the Natural Exponential Function
Let be a differentiable function of . Then, 1. 2.
Exercises Differentiate each function:
a)
| Solution: |
|---|
b)
| Solution: |
|---|
c)
| Solution: |
|---|
d)
| Solution: |
|---|
e)
| Solution: |
|---|
This page were made by Tri Phan