Difference between revisions of "Math 22 Exponential Functions"

From Math Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Definition of Exponential Function==
 
==Definition of Exponential Function==
 
   If <math>a>0</math> and <math>a\ne 1</math>, then the exponential function with base <math>a</math> is <math>a^x</math>
 
   If <math>a>0</math> and <math>a\ne 1</math>, then the exponential function with base <math>a</math> is <math>a^x</math>
 +
==Properties of Exponents==
 +
Let <math>a</math> and <math>b</math> be positive real numbers, and let <math>x</math> and <math>y</math> be real numbers.
 +
 +
1.<math>a^0=1</math>
 +
 +
2.<math>a^xa^y=a^{x+y}</math>
 +
 +
3.<math>\frac{a^x}{a^y}=a^{x-y}</math>
 +
 +
4.<math>(a^x)^y=a^{xy}</math>
 +
 +
5.<math>(ab)^x=a^xb^x</math>
 +
 +
6.<math>(\frac{a}{b})^x=\frac{a^x}{b^x}</math>
 +
 +
7.<math>a^{-x}=\frac{1}{a^x}</math>
 +
 +
'''Exercises''' Use the properties of exponents to simplify each expression:
 +
 +
'''a)''' <math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
 +
|}
 +
 +
'''b)''' <math>\frac{7^5}{49^3}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\frac{7^5}{49^3}=\frac{7^5}{(7^2)^3}=\frac{7^5}{7^{2.3}}=\frac{7^5}{7^6}=7^{5-6}=7^{-1}=\frac{1}{7}</math>
 +
|}
 +
 +
'''c)''' <math>(\frac{1}{4})^2(4^2)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>(\frac{1}{4})^2(4^2)=(4^{-2})(4^2)=4^{-2+2}=4^0=1</math>
 +
|}
 +
 +
==Graphs of Exponential Functions==
 +
 +
The graph of the exponential function <math>a^x</math> where <math>a>0, a\ne 1</math> always goes through the point <math>(0,1)</math> and has a horizontal asymptote <math>y=0</math>
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 06:44, 11 August 2020

Definition of Exponential Function

 If  and , then the exponential function with base  is 

Properties of Exponents

Let and be positive real numbers, and let and be real numbers.

1.

2.

3.

4.

5.

6.

7.

Exercises Use the properties of exponents to simplify each expression:

a)

Solution:  

b)

Solution:  

c)

Solution:  

Graphs of Exponential Functions

The graph of the exponential function where always goes through the point and has a horizontal asymptote

Return to Topics Page

This page were made by Tri Phan