Difference between revisions of "009A Sample Final A, Problem 1"

From Math Wiki
Jump to navigation Jump to search
m
m
 
(5 intermediate revisions by the same user not shown)
Line 14: Line 14:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. Unfortunately, most (but not all) exam questions require more work.  Many of them will evaluate to an '''indeterminate form''', or something of the form
+
|When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit,
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac {1}{\infty} = 0,</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow 0^{\pm}}\frac{1}{x}\,=\,\pm \infty.</math>
 +
|-
 +
|In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work.  Many of them will evaluate to an '''indeterminate form''', or something of the form
 
|-
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{0}{0}</math>&nbsp;&nbsp; or &nbsp;&nbsp;<math>\frac {\pm \infty}{\pm \infty}.</math>
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{0}{0}</math>&nbsp;&nbsp; or &nbsp;&nbsp;<math>\frac {\pm \infty}{\pm \infty}.</math>
 
|-
 
|-
|<br>In this case, here are several approaches to try:
+
|<br>In this case, there are several approaches to try:
 
|-
 
|-
 
|
 
|
Line 27: Line 35:
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>
 
|Note that the first requirement in l'H&ocirc;pital's Rule is that the fraction <u>''must''</u> be an indeterminate form.  This should be shown in your answer for any exam question.<br>
 
|}
 
|}
 +
 +
&nbsp;'''Solution:'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Part (a): &nbsp;
 
!Part (a): &nbsp;
 +
|-
 +
|Note that both the numerator and denominator are continuous functions, and that the limit of each is 0 as <math style="vertical-align: 0%;">x</math> approaches 0.  This is an indeterminate form, and we can apply l'H&ocirc;pital's Rule:
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}\,\,\overset{l'H}{=}\,\,\lim_{x\rightarrow0}\frac{\sec^{2}(3x)\cdot3}{3x^{2}}\,=\,\lim_{x\rightarrow0}\frac{3}{3x^{2}}.</math>
 +
|-
 +
|Now, <math style="vertical-align: 0%;">x^2</math> can only be positive, so our limit can also only be positive.  Thus, the limit is <math style="vertical-align: -0%;">+\infty</math>&thinsp;.<br>
 +
|}
  
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Part (b): &nbsp;
 +
|-
 +
|In the case of limits at infinity, we can apply one other method.  We can multiply our original argument by a fraction equal to one, and then can evaluate each term separately. Since we only need to consider values which are negative, we have that
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>-\,\frac{\sqrt{\frac{1}{x^{6}}}}{\frac{1}{x^{3}}}\,=\,1,</math>
 +
|-
 +
|since for negative values of <math style="vertical-align: 0%;">x</math>,
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\sqrt{\frac{1}{x^{6}}}\,=\,\left|\frac{1}{x^{3}}\right|\,=\,-\,\frac{1}{x^{3}}.</math>
 +
|-
 +
|This means that
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}\,=\,\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}\cdot\left(-\,\frac{\sqrt{\frac{1}{x^{6}}}}{\frac{1}{x^{3}}}\right)</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,\lim_{x\rightarrow-\infty}-\,\frac{\sqrt{1+\frac{6x^{2}}{x^{6}}+\frac{2}{x^{6}}}}{1+\frac{x}{x^{3}}+\frac{1}{x}}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,\lim_{x\rightarrow-\infty}-\,\frac{\sqrt{1+\frac{6}{x^{4}}+\frac{2}{x^{6}}}}{1+\frac{1}{x^{2}}+\frac{1}{x}}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,-\,\frac{\sqrt{1+0+0}}{1+0+0}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,-1.</math><br>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Part (c): &nbsp;
 +
|-
 +
|Here, both the numerator and denominator go to zero as <math style="vertical-align: 0%;">x</math> goes to 3, so we have an indeterminate form.  We can choose to either apply l'H&ocirc;pital's Rule, or use the conjugate of the denominator.  Using the conjugate, we find
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}\cdot\frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}\,=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{\left(\sqrt{x+1}\right)^{2}-\left(2\right)^{2}}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{x+1-4}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{x-3}</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,\lim_{x\rightarrow3}\sqrt{x+1}+2</math>
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <math>=\,4.</math>
 +
|-
 +
|Alternatively, we can apply l'H&ocirc;pital's Rule:
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}\,\,\overset{l'H}{=}\,\,\lim_{x\rightarrow3}\frac{1}{{\displaystyle \frac{1}{2}\cdot\frac{1}{\sqrt{x+1}}}}\,=\,\frac{1}{\frac{1}{2}\cdot\frac{1}{2}}\,=\,4.</math><br>
 +
|}
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Part (d): &nbsp;
 +
|-
 +
|This problem is meant to confuse you.  It <u>''looks''</u> like you should multiply by a conjugate, but instead you can just plug in and evaluate:
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}\,=\,\frac{3-1}{\sqrt{3+1}-1}\,=\,2.</math><br>
 +
|}
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Part (e): &nbsp;
 +
|-
 +
|Here, we again multiply by a fraction equal to one, noticing that for all <math style="vertical-align: 0%;">x</math>,
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\,=\,1.</math>
 +
|-
 +
|This means that
 +
|-
 +
|&nbsp;&nbsp;&nbsp;&nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}\,=\,\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}\cdot\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\,=\,\lim_{x\rightarrow\infty}\frac{5-\frac{2}{x}+\frac{3}{x^{2}}}{\frac{1}{x^{2}}-3}\,=\,\frac{5-0+0}{0-3}\,=\,-\,\frac{5}{3}.</math><br>
 
|}
 
|}
  
  
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:21, 27 March 2015

1. Find the following limits:
   (a)  

   (b)

   (c)  

   (d)  

   (e) 

Foundations:  
When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit,
    
and
    
In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an indeterminate form, or something of the form

        or   

In this case, there are several approaches to try:
  • We can multiply the numerator and denominator by the conjugate of the denominator. This frequently results in a term that cancels, allowing us to then just plug in our limit value.
  • We can factor a term creatively. For example, can be factored as  , or as  , both of which could result in a factor that cancels in our fraction.
  • We can apply l'Hôpital's Rule: Suppose is contained in some interval . If   and   exists, and   for all   in , then .
Note that the first requirement in l'Hôpital's Rule is that the fraction must be an indeterminate form. This should be shown in your answer for any exam question.

 Solution:

Part (a):  
Note that both the numerator and denominator are continuous functions, and that the limit of each is 0 as approaches 0. This is an indeterminate form, and we can apply l'Hôpital's Rule:
    
Now, can only be positive, so our limit can also only be positive. Thus, the limit is  .
Part (b):  
In the case of limits at infinity, we can apply one other method. We can multiply our original argument by a fraction equal to one, and then can evaluate each term separately. Since we only need to consider values which are negative, we have that
    
since for negative values of ,
    
This means that
    
                                                    
                                                    
                                                    
                                                    
Part (c):  
Here, both the numerator and denominator go to zero as goes to 3, so we have an indeterminate form. We can choose to either apply l'Hôpital's Rule, or use the conjugate of the denominator. Using the conjugate, we find
    
                                                                      
                                                                      
                                                                      
                                                                      
Alternatively, we can apply l'Hôpital's Rule:
    
Part (d):  
This problem is meant to confuse you. It looks like you should multiply by a conjugate, but instead you can just plug in and evaluate:
    
Part (e):  
Here, we again multiply by a fraction equal to one, noticing that for all ,
    
This means that
    


Return to Sample Exam