Difference between revisions of "009A Sample Final A, Problem 1"
(Created page with "<span style="font-size:135%"><font face=Times Roman> 1. Find the following limits:<br> (a) <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\ta...") |
m |
||
(7 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. | + | |When evaluating limits of rational functions, the first idea to try is to simply plug in the limit. In addition to this, we must consider that as a limit, |
+ | |- | ||
+ | | <math>\frac {1}{\infty} = 0,</math> | ||
+ | |- | ||
+ | |and | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow 0^{\pm}}\frac{1}{x}\,=\,\pm \infty.</math> | ||
+ | |- | ||
+ | |In the latter case, the sign matters. Unfortunately, most (but not all) exam questions require more work. Many of them will evaluate to an '''indeterminate form''', or something of the form | ||
|- | |- | ||
|<br> <math>\frac{0}{0}</math> or <math>\frac {\pm \infty}{\pm \infty}.</math> | |<br> <math>\frac{0}{0}</math> or <math>\frac {\pm \infty}{\pm \infty}.</math> | ||
|- | |- | ||
− | |<br>In this case, | + | |<br>In this case, there are several approaches to try: |
|- | |- | ||
| | | | ||
*We can multiply the numerator and denominator by the conjugate of the denominator. This frequently results in a term that cancels, allowing us to then just plug in our limit value. | *We can multiply the numerator and denominator by the conjugate of the denominator. This frequently results in a term that cancels, allowing us to then just plug in our limit value. | ||
− | *We can factor a term creatively. For example, <math style="vertical-align: - | + | *We can factor a term creatively. For example, <math style="vertical-align: -9%;">x-1</math> can be factored as <math style="vertical-align: -48%;">\left(\sqrt{x}-1\right) \left(\sqrt{x}+1\right)</math> , or as <math style="vertical-align: -71%;">\left(\sqrt[3]{x}-1\right)\left(\left(\sqrt[3]{x}\right)^{2}+\sqrt[3]{x}+1\right)</math> , both of which could result in a factor that cancels in our fraction. |
− | *We can apply '''l'Hôpital's Rule:''' Suppose <math style="vertical-align: 0%;">c</math> is contained in some interval <math style="vertical-align: 0%;">I</math>. If <math style="vertical-align: - | + | *We can apply '''l'Hôpital's Rule:''' Suppose <math style="vertical-align: 0%;">c</math> is contained in some interval <math style="vertical-align: 0%;">I</math>. If <math style="vertical-align: -60%;">\lim_{x \to c}f(x)=\lim_{x \to c}g(x)=0 \text{ or } \pm\infty</math>  and <math style="vertical-align: -85%;">\lim_{x\to c}\frac{f'(x)}{g'(x)}</math> exists, and <math style="vertical-align: -24%;">g'(x)\neq 0</math>  for all <math style="vertical-align: -23%;">x\neq c</math>  in <math style="vertical-align: 0%;">I</math>, then <math style="vertical-align: -84%;">\lim_{x\to c}\frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}</math>. |
|- | |- | ||
|Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | |Note that the first requirement in l'Hôpital's Rule is that the fraction <u>''must''</u> be an indeterminate form. This should be shown in your answer for any exam question.<br> | ||
|} | |} | ||
+ | |||
+ | '''Solution:''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Part (a): | !Part (a): | ||
+ | |- | ||
+ | |Note that both the numerator and denominator are continuous functions, and that the limit of each is 0 as <math style="vertical-align: 0%;">x</math> approaches 0. This is an indeterminate form, and we can apply l'Hôpital's Rule: | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}\,\,\overset{l'H}{=}\,\,\lim_{x\rightarrow0}\frac{\sec^{2}(3x)\cdot3}{3x^{2}}\,=\,\lim_{x\rightarrow0}\frac{3}{3x^{2}}.</math> | ||
+ | |- | ||
+ | |Now, <math style="vertical-align: 0%;">x^2</math> can only be positive, so our limit can also only be positive. Thus, the limit is <math style="vertical-align: -0%;">+\infty</math> .<br> | ||
+ | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Part (b): | ||
+ | |- | ||
+ | |In the case of limits at infinity, we can apply one other method. We can multiply our original argument by a fraction equal to one, and then can evaluate each term separately. Since we only need to consider values which are negative, we have that | ||
+ | |- | ||
+ | | <math>-\,\frac{\sqrt{\frac{1}{x^{6}}}}{\frac{1}{x^{3}}}\,=\,1,</math> | ||
+ | |- | ||
+ | |since for negative values of <math style="vertical-align: 0%;">x</math>, | ||
+ | |- | ||
+ | | <math>\sqrt{\frac{1}{x^{6}}}\,=\,\left|\frac{1}{x^{3}}\right|\,=\,-\,\frac{1}{x^{3}}.</math> | ||
+ | |- | ||
+ | |This means that | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}\,=\,\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}\cdot\left(-\,\frac{\sqrt{\frac{1}{x^{6}}}}{\frac{1}{x^{3}}}\right)</math> | ||
+ | |- | ||
+ | | <math>=\,\lim_{x\rightarrow-\infty}-\,\frac{\sqrt{1+\frac{6x^{2}}{x^{6}}+\frac{2}{x^{6}}}}{1+\frac{x}{x^{3}}+\frac{1}{x}}</math> | ||
+ | |- | ||
+ | | <math>=\,\lim_{x\rightarrow-\infty}-\,\frac{\sqrt{1+\frac{6}{x^{4}}+\frac{2}{x^{6}}}}{1+\frac{1}{x^{2}}+\frac{1}{x}}</math> | ||
+ | |- | ||
+ | | <math>=\,-\,\frac{\sqrt{1+0+0}}{1+0+0}</math> | ||
+ | |- | ||
+ | | <math>=\,-1.</math><br> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Part (c): | ||
+ | |- | ||
+ | |Here, both the numerator and denominator go to zero as <math style="vertical-align: 0%;">x</math> goes to 3, so we have an indeterminate form. We can choose to either apply l'Hôpital's Rule, or use the conjugate of the denominator. Using the conjugate, we find | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}\cdot\frac{\sqrt{x+1}+2}{\sqrt{x+1}+2}\,=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{\left(\sqrt{x+1}\right)^{2}-\left(2\right)^{2}}</math> | ||
+ | |- | ||
+ | | <math>=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{x+1-4}</math> | ||
+ | |- | ||
+ | |  | <math>=\,\lim_{x\rightarrow3}\frac{(x-3)(\sqrt{x+1}+2)}{x-3}</math> | ||
+ | |- | ||
+ | | <math>=\,\lim_{x\rightarrow3}\sqrt{x+1}+2</math> | ||
+ | |- | ||
+ | | <math>=\,4.</math> | ||
+ | |- | ||
+ | |Alternatively, we can apply l'Hôpital's Rule: | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}\,\,\overset{l'H}{=}\,\,\lim_{x\rightarrow3}\frac{1}{{\displaystyle \frac{1}{2}\cdot\frac{1}{\sqrt{x+1}}}}\,=\,\frac{1}{\frac{1}{2}\cdot\frac{1}{2}}\,=\,4.</math><br> | ||
+ | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Part (d): | ||
+ | |- | ||
+ | |This problem is meant to confuse you. It <u>''looks''</u> like you should multiply by a conjugate, but instead you can just plug in and evaluate: | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}\,=\,\frac{3-1}{\sqrt{3+1}-1}\,=\,2.</math><br> | ||
+ | |} | ||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Part (e): | ||
+ | |- | ||
+ | |Here, we again multiply by a fraction equal to one, noticing that for all <math style="vertical-align: 0%;">x</math>, | ||
+ | |- | ||
+ | | <math>\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\,=\,1.</math> | ||
+ | |- | ||
+ | |This means that | ||
+ | |- | ||
+ | | <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}\,=\,\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}\cdot\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\,=\,\lim_{x\rightarrow\infty}\frac{5-\frac{2}{x}+\frac{3}{x^{2}}}{\frac{1}{x^{2}}-3}\,=\,\frac{5-0+0}{0-3}\,=\,-\,\frac{5}{3}.</math><br> | ||
|} | |} | ||
[[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_A|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 18:21, 27 March 2015
1. Find the following limits:
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.}
(d) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.}
(e) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.}
ExpandFoundations: |
---|
Solution:
ExpandPart (a): |
---|
ExpandPart (b): |
---|
ExpandPart (c): |
---|
ExpandPart (d): |
---|
ExpandPart (e): |
---|