Difference between revisions of "009A Sample Final A, Problem 3"

From Math Wiki
Jump to navigation Jump to search
m
Line 1: Line 1:
 +
[[File:009A_SF_A_3.png|right|230px|frame|Both functions with constants chosen to provide continuity.]]
 +
 
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function:
 
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function:
 
&nbsp;<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
&nbsp;<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>

Revision as of 14:21, 27 March 2015

Both functions with constants chosen to provide continuity.

3. (Version I) Consider the following function:  
   (a) Find a value of   which makes continuous at
   (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Consider the following function:  
   (a) Find a value of   which makes continuous at
   (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

Foundations:  
A function is continuous at a point if
    
This can be viewed as saying the left and right hand limits exist, and are equal. For problems like these, where we are trying to find a particular value for  , we can just set the two descriptions of the function to be equal at the value where the definition of changes.
When we speak of differentiability at such a transition point, being "motivated by the definition of the derivative" really means acknowledge that the derivative is a limit, and for a limit to exist it must agree from the left and the right. This means we must show the derivatives agree for both the descriptions of at the transition point.

 Solution:

Version I:  
(a) For continuity, we evaluate both rules for the function at the transition point , set the results equal, and then solve for . Since we want
       
we can set , and the function will be continuous (the left and right hand limits agree, and equal the function's value at the point  ).

(b) To test differentiability, we note that for ,

       
while for ,
       
Thus
       
but
       
Since the left and right hand limit do not agree, the derivative does not exist at the point .
Version II:  
(a) Like Version I, we begin by setting the two functions equal. We want
       
so makes the function continuous.
(b) We again consider the derivative from each side of 1. For ,
       
while for ,
       
Thus
       
and
       
Since the left and right hand limit do agree, the limit (which is the derivative) does exist at the point .


Return to Sample Exam