Difference between revisions of "Math 22 Functions"

From Math Wiki
Jump to navigation Jump to search
 
(32 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
A '''function''' is a relationship between two variables such that to each value of the independent variable there corresponds exactly one value of the dependent variable.
 
A '''function''' is a relationship between two variables such that to each value of the independent variable there corresponds exactly one value of the dependent variable.
  
The '''domain''' of the function is the set of all values of the independent variable for which the function is defined. The '''range''' of the function is the set of all values taken on by the dependent variable.
+
The '''domain''' of the function is the set of all values of the independent variable for which the function is defined.  
  
==Notes:==
+
The '''range''' of the function is the set of all values taken on by the dependent variable.
  
 +
'''Function notation''': We usually denote a function f of x as <math>f(x)</math>. For example, function <math>y=2x^2+1</math> can be written as <math>f(x)=2x^2+1</math> in function notation.
 +
 +
'''Exercises'''
 +
Find the domain and range of the following functions:
 +
 +
'''1)''' <math>y=\sqrt{x+1}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|The domain is where the function defines (or all possible values of x). So, the radicand (everything under the square root) need to be non-negative.
 +
|-
 +
|So, <math>x+1\geq 0</math>
 +
|-
 +
|'''Answer:''' <math>x\geq -1</math> or <math>[-1,\infty)</math>
 +
|-
 +
|The range is all of possible outcomes (values of y). Notice that <math>\sqrt{x+1}</math> is never negative. So <math>y</math> is never negative.
 +
|-
 +
|'''Answer''': <math>y\geq 0</math> or <math>[0,\infty)</math>
 +
|}
 +
 +
==Evaluate a Function==
 +
 +
To evaluate a function <math>f(x)</math> at <math> x=a </math>. We just need to plug in <math>x=a</math> to find <math>f(a)</math>.
 +
 +
'''Example''': Find the value of the function <math>f(x)=4x^2+1</math> at <math>x=1,2,3</math>
 +
 +
'''Answer''':
 +
 +
<math>f(1)=4(1)^2+1=4+1=5</math>
 +
 +
<math>f(2)=4(2)^2+1=16+1=17</math>
 +
 +
<math>f(3)=4(3)^2+1=36+1=37</math>
 +
 +
'''Exercises'''
 +
Find the value of the function at the given values:
 +
 +
'''2)''' <math>y=\sqrt{x+1}</math> at <math>x=3,-3</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f(3)=\sqrt{3+1}=\sqrt{4}=2</math>
 +
|-
 +
|<math> x=-3</math> isn't in the domain of <math>f(x)</math>. So, <math>f(-3)=</math> undefined
 +
|-
 +
|'''OR'''
 +
|-
 +
|<math>f(-3)=\sqrt{-3+1}=\sqrt{-2}=undefined</math>
 +
|}
 +
==Combinations of Functions==
 +
 +
Two functions can be combine in varuious way. For example, let <math>f(x)=2x+1</math> and <math>g(x)=x^2+3</math>. Then,
 +
 +
<math>f(x)+g(x)=(2x+1)+(x^2+3)=x^2+2x+4</math>
 +
 +
<math>f(x)-g(x)=(2x+1)-(x^2+3)=-x^2+2x-2</math>
 +
 +
<math>f(x)g(x)=(2x+1)(x^2+3)=2x^3+x^2+6x+3</math>
 +
 +
<math>\frac{f(x)}{g(x)}=\frac {2x+1}{x^2+3}</math>
 +
 +
==Composite Function==
 +
 +
Let <math>f</math> and <math>g</math> be functions. The function given by <math>(f\circ g)(x)=f(g(x))</math> is the composite function of <math>f</math> and <math>g</math>.
 +
 +
Examples: Let <math>f(x)=2x+1</math> and <math>g(x)=x^2+3</math>
 +
 +
So, <math>(f\circ g)(x)=f(g(x))=f(x^2+3)=2(x^2+3)+1=2x^2+7</math>
 +
 +
'''Exercises''' Given <math>f(x)=3x-2</math> and <math>g(x)=2x^2-1</math>. Find each composite function below
 +
 +
'''1)''' <math>(f\circ g)(x)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>f(g(x))=f(2x^2-1)=3(2x^2-1)-2=6x^2-5</math>
 +
|}
 +
 +
'''2)''' <math>(g\circ f)(x)</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>g(f(x))=g(3x-2)=2(3x-2)^2-1</math>
 +
|-
 +
 +
|}
 +
 +
==Inverse Functions==
 +
Informally, the inverse function of <math>f</math> is another function <math>g</math> that “undoes” what <math>f</math> has done. We usually denote <math>g</math> as <math>f^{-1}</math>
 +
 +
  Formal definition of inverse function.
 +
  Let <math>f</math> and <math>g</math> be functions such that
 +
  <math>(f\circ g)(x)=f(g(x))=x</math>
 +
  and
 +
  <math>(g\circ f)(x)=g(f(x))=x</math>
 +
  Under these conditions, the function <math>g</math> is the inverse function of <math>f</math>, we denote <math>g=f^{-1}</math>
 +
 +
'''Important''': The domain of <math>f</math> must be equal to the range of <math>f^{-1}</math> , and the range of <math>f</math> must be equal to the domain of <math>f^{-1}</math>
 +
 +
'''Exercise: '''
 +
 +
'''1)''' Show two functions <math>f(x)=4x</math> and <math>g(x)=\frac {1}{4}x</math> are inverses
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|We want to show that these two functions satisfy <math>f(g(x))=x</math> and <math>g(f(x))=x</math>. So
 +
|-
 +
|Consider <math>f(g(x))=f(\frac{1}{4}x=4(\frac{1}{4}x)=x</math>
 +
|-
 +
|and <math>g(x(x))=g(4x)=\frac{1}{4}(4x)=x</math>
 +
|-
 +
|Hence, <math>f(x)=4x</math> and <math>g(x)=\frac {1}{4}x</math> are inverses
 +
|}
 +
 +
'''2)''' Show two functions <math>f(x)=\frac {3}{2}x+1</math> and <math>g(x)=\frac {2}{3}(x-1)</math> are inverses
 +
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|We want to show that these two functions satisfy <math>f(g(x))=x</math> and <math>g(f(x))=x</math>. So
 +
|-
 +
|Consider <math>f(g(x))=f(\frac {2}{3}(x-1))=\frac{3}{2}[\frac{2}{3}(x-1)]+1=(x-1)+1=x</math>
 +
|-
 +
|and <math>g(x(x))=g(\frac {3}{2}x+1)=\frac{2}{3}(\frac{3}{2}x+1-1)=\frac{2}{3}(\frac{3}{2}x)=x</math>
 +
|-
 +
|Hence, <math>f(x)=\frac {3}{2}x+1</math> and <math>g(x)=\frac {2}{3}(x-1)</math> are inverses
 +
|}
 +
==Finding Inverse Function==
 +
 +
  To find the inverse function <math>f^{-1}(x)</math> of a given function <math>f(x)</math>. We can follow these steps:
 +
 
 +
  1) Replace <math>f(x)</math> with <math>y</math>
 +
  2) Interchange <math>x</math> and <math>y</math>
 +
  3) Solve for <math>y</math>
 +
  4) Replace <math>y</math> by <math>f^{-1}(x)</math>
 +
 +
'''Exercises''' Find the inverse function of
 +
 +
'''1)''' <math>f(x)=4x-1</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Step 1: <math>y=4x-1</math>
 +
|-
 +
|Step 2: <math>x=4y-1</math>
 +
|-
 +
|Step 3: <math>4y=x+1</math>
 +
|-
 +
|<span style="display:inline-block; width: 45px;"></span> <math>    y=\frac {x+1}{4}</math>
 +
|-
 +
|Step 4: <math>f^{-1}(x)=\frac {x+1}{4}</math>
 +
|}
 +
 +
'''2)''' <math>f(x)=\frac {3}{2}x+1</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Step 1: <math>y=\frac {3}{2}x+1</math>
 +
|-
 +
|Step 2: <math>x=\frac {3}{2}y+1</math>
 +
|-
 +
|Step 3: <math>\frac {3}{2}y=x-1</math>
 +
|-
 +
|<span style="display:inline-block; width: 45px;"></span><math>    y=\frac {3}{2}(x-1)</math>
 +
|-
 +
|Step 4: <math>f^{-1}(x)=\frac {3}{2}(x-1)</math>
 +
|}
 +
 +
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 06:50, 19 July 2020

Basic Definitions

A function is a relationship between two variables such that to each value of the independent variable there corresponds exactly one value of the dependent variable.

The domain of the function is the set of all values of the independent variable for which the function is defined.

The range of the function is the set of all values taken on by the dependent variable.

Function notation: We usually denote a function f of x as . For example, function can be written as in function notation.

Exercises Find the domain and range of the following functions:

1)

Solution:  
The domain is where the function defines (or all possible values of x). So, the radicand (everything under the square root) need to be non-negative.
So,
Answer: or
The range is all of possible outcomes (values of y). Notice that is never negative. So is never negative.
Answer: or

Evaluate a Function

To evaluate a function at . We just need to plug in to find .

Example: Find the value of the function at

Answer:

Exercises Find the value of the function at the given values:

2) at

Solution:  
isn't in the domain of . So, undefined
OR

Combinations of Functions

Two functions can be combine in varuious way. For example, let and . Then,

Composite Function

Let and be functions. The function given by is the composite function of and .

Examples: Let and

So,

Exercises Given and . Find each composite function below

1)

Solution:  

2)

Solution:  

Inverse Functions

Informally, the inverse function of is another function that “undoes” what has done. We usually denote as

 Formal definition of inverse function.
 Let  and  be functions such that
 
 and
 
 Under these conditions, the function  is the inverse function of , we denote 

Important: The domain of must be equal to the range of , and the range of must be equal to the domain of

Exercise:

1) Show two functions and are inverses

Solution:  
We want to show that these two functions satisfy and . So
Consider
and
Hence, and are inverses

2) Show two functions and are inverses

Solution:  
We want to show that these two functions satisfy and . So
Consider
and
Hence, and are inverses

Finding Inverse Function

 To find the inverse function  of a given function . We can follow these steps:
 
 1) Replace  with 
 2) Interchange  and 
 3) Solve for 
 4) Replace  by 

Exercises Find the inverse function of

1)

Solution:  
Step 1:
Step 2:
Step 3:
Step 4:

2)

Solution:  
Step 1:
Step 2:
Step 3:
Step 4:

Return to Topics Page

This page were made by Tri Phan