Difference between revisions of "007A Sample Midterm 1, Problem 3 Detailed Solution"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Let  <math style="vertical-align: -5px">y=2x^2-3x+1.</math> <span class="exam">(a) Use the '''definition of the derivative''' to compute   <math...")
 
 
Line 31: Line 31:
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{2(x+h)^2-3(x+h)+1-(2x^2-3x+1)}{h}}\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{2(x+h)^2-3(x+h)+1-(2x^2-3x+1)}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{2x^2+4xh+2h^2-3x-3h+1-2x^2-3x-1}{h}}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{2x^2+4xh+2h^2-3x-3h+1-2x^2+3x-1}{h}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{4xh+2h^2-3h}{h}.}
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{4xh+2h^2-3h}{h}.}
Line 47: Line 47:
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{h(4x+2h-3)}{h}}\\
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{h(4x+2h-3)}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0} 4x+2h-3}\\
+
& = & \displaystyle{\lim_{h\rightarrow 0} (4x+2h-3)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{4x-3.}
 
& = & \displaystyle{4x-3.}
Line 92: Line 92:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>4x-3</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{dy}{dx}=4x-3</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>y=5x-7</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>y=5x-7</math>
 
|}
 
|}
 
[[007A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[007A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 11:29, 5 January 2018

Let  

(a) Use the definition of the derivative to compute  

(b) Find the equation of the tangent line to    at  


Background Information:  
Recall
       


Solution:

(a)

Step 1:  
Let  
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we simplify to get
       

(b)

Step 1:  
We start by finding the slope of the tangent line to    at  
Using the derivative calculated in part (a), the slope is
       
Step 2:  
Now, the tangent line to    at  
has slope    and passes through the point  
Hence, the equation of this line is
If we simplify, we get


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam