Difference between revisions of "009C Sample Midterm 3, Problem 5"

From Math Wiki
Jump to navigation Jump to search
m
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the radius of convergence and the interval of convergence
+
<span class="exam"> Find the radius of convergence and the interval of convergence
 
of the series.  
 
of the series.  
  
::<span class="exam">(a) (6 points) &nbsp;&nbsp;&nbsp;&nbsp; <math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}.</math>
+
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}</math>
  
::<span class="exam">(b) (6 points) &nbsp;&nbsp;&nbsp;&nbsp; <math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}.</math>
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}</math>
 +
<hr>
 +
[[009C Sample Midterm 3, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Foundations: &nbsp;
 
|-
 
|When we are asked to find the radius of convergence, we are given a series where
 
|-
 
|
 
::<math>a_n=f(x-c)\cdot g(n)</math>
 
|-
 
|where <math style="vertical-align: -20%">f</math> and <math style="vertical-align: -20%">g</math> are functions of <math style="vertical-align: 0%">x</math> and <math style="vertical-align: 0%">n</math> respectively, and <math style="vertical-align: 0%">c</math> is a constant (frequently zero).  We need to find a bound (radius) on <math style="vertical-align: -22%">|x-c|</math> such that whenever <math style="vertical-align: -22%">|x-c|<r</math>, the ratio test
 
|-
 
|
 
::<math>\left|\frac{a_{n+1}}{a_n}\right|<1.</math>
 
|-
 
When we do, the interval will be <math style="vertical-align: -20%">(c-r,c+r)</math>.  However, the boundary values for <math style="vertical-align: 0%">x</math>, <math style="vertical-align: 0%">c-r</math> and <math style="vertical-align: -8%">c+r</math> must be tested individually for convergence.  Many times, one boundary value will produce an alternating, convergent series while the other will produce a divergent, non-alternating series. As a result, intervals of convergence may open, half-open or closed.
 
|}
 
  
&nbsp;'''Solution:'''
+
[[009C Sample Midterm 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a): &nbsp;
 
|-
 
|We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>,
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(-1)^{n+1}x^{n+1}}{n+2}}{\frac{(-1)^{n}x^{n}}{n+1}}\right|\\
 
\\
 
& = & \lim_{n\rightarrow\infty}\left|x\cdot\frac{n+1}{n+2}\right|\\
 
\\
 
& = & |x|\cdot\lim_{n\rightarrow\infty}\left|\frac{n+1}{n+2}\right|\\
 
\\
 
& = & |x|<1.
 
\end{array}</math>
 
|-
 
|In this case, the radius is 1, and the interval will be centered at 0. We then need to take a look at the boundary points. If <math style="vertical-align: -20%">x=1,</math> then
 
|-
 
|
 
::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}}{n+1},</math>
 
|-
 
|so the series is an alternating harmonic series which converges. On the other hand, if <math style="vertical-align: -20%">x=-1,</math> then
 
|-
 
|
 
::<math>a_{n}\,=\,\frac{(-1)^{n}x^{n}}{n+1}\,=\,\frac{(-1)^{n}(-1)^{n}}{n+1}\,=\,\frac{1}{n+1},</math>
 
|-
 
|a standard harmonic series which does not converge. Thus, the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(b): &nbsp;
 
|-
 
|We need to choose a radius <math style="vertical-align: 0%">r</math> such that whenever <math style="vertical-align: -20%">|x|<r</math>,
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right| & = & \lim_{n\rightarrow\infty}\left|\frac{\frac{(x+1)^{n+1}}{(n+1)^{2}}}{\frac{(x+1)^{n}}{n^{2}}}\right|\\
 
\\
 
& = & \lim_{n\rightarrow\infty}\left|(x+1)\cdot\left(\frac{n}{n+1}\right)^{2}\right|\\
 
\\
 
& = & |x+1|\cdot\lim_{n\rightarrow\infty}\left(\frac{n}{n+1}\right)^{2}\\
 
\\
 
& = & |x+1|<1.
 
\end{array}</math>
 
|-
 
|In this case, the radius is 1, and the interval will be centered at <math style="vertical-align: -2%">x=-1</math>, or when <math style="vertical-align: -5%">x+1=0</math>. We then need to take a look at the boundary points. If <math style="vertical-align: 0%">x=-2</math> or <math style="vertical-align: 0%">x=0</math>, then
 
|-
 
|
 
::<math>\left|a_{n}\right|\,=\,\left|\frac{(x+1)^{n}}{n^{2}}\right|\,=\,\frac{1}{n^{2}},</math>
 
|-
 
|which defines a p-series with <math style="vertical-align: -20%">p=2</math>. Thus, the series defined by each boundary point is absolutely convergent (and therefore convergent), and the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>.
 
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|For (a), the radius is 1 and the interval of convergence is <math style="vertical-align: -20%">(-1,1]</math>.
 
|-
 
|For (b), the radius is also 1, but the interval of convergence is <math style="vertical-align: -20%">[-2,0]</math>.
 
|}
 
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 08:47, 28 November 2017

Find the radius of convergence and the interval of convergence of the series.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam